• Title/Summary/Keyword: calcined kaolin

Search Result 17, Processing Time 0.02 seconds

Effect of the Heating Temperature on the Alkali-activation Reaction of Calcined Kaolin Powder (열처리 카올린 분말의 알칼리활성화 반응에 미치는 가열온도의 영향)

  • Kim, Sung Gon;Song, Tae Woong
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.601-607
    • /
    • 2012
  • The alkali-activation reaction of two types of typical kaolin calcined at various lower temperatures was investigated at room temperature and at elevated temperatures. For the assessment of the reactivity, the temperature increase and the setting time of pastes prepared with calcined kaolin and sodium/potassium hydroxide solution were measured. Unlike raw kaolin, calcined kaolin samples prepared at various temperature showed an alkali-activation reaction according to the different aspects of the changes in the mineral phases. The reactivity with alkaline solutions was exceedingly activated in the samples calcined at $600-650^{\circ}C$, but the reactivity gradually decreased as the temperature increased in a higher temperature range, most likely due to the changes in the crystal structure of the dehydrated kaolin. The activation effect of the calcination treatment was achieved at reaction temperatures that exceeded $60^{\circ}C$ and was enhanced as the temperature increased. The reactivity of the calcined kaolin with an alkaline solution was more enhanced with the solution of a higher concentration and with a solution prepared from sodium hydroxide rather than potassium hydroxide.

Studies on the Surface Treatment of Kaolin Filler(Part I) -Fundamental Properties of Kaolin Filler and Treatment Effect on Physical Properties of Rubbers- (Kaolin 충전제(充塡劑) 표면처리(表面處理)에 관(關)한 연구(硏究)(제1보(第1報)) -Kaolin의 기초성상(基礎性狀) 및 고무물성(物性)에 대(對)한 처리효과(處理效果)-)

  • Kwon, Dong-Yong;Hong, Sung-Il;Lee, Yong-Moo
    • Elastomers and Composites
    • /
    • v.18 no.3
    • /
    • pp.87-98
    • /
    • 1983
  • Fundamental properties and surface treatment effects of domestic kaolin calcined at higher temperature were studied to develop reinforcing fillers for rubbers. The results obtained are as follows: (i) X-ray diffraction and scanning electron microscopy studies revealed kaolinite as a major constituent of the raw kaolin used in this study. (ii) Physical properties of natural rubber vulcanizates compounded with the calcined kaolin fillers treated with poly(maleic anhydride) and sodium polyphosphate are favorably improved. Particularly, the kaolin filler treated with sodium polyphosphate(designated as PT series) shows excellent physical properties compared with hydrated silica.

  • PDF

A Study on the Extraction of Alumina from Kaolin (카오린으로부터 $Al_2O_3$의 용출에 관한 연구)

  • 백용혁;이종근
    • Journal of the Korean Ceramic Society
    • /
    • v.19 no.2
    • /
    • pp.157-161
    • /
    • 1982
  • The possibility of extraction of alumina from domestic Ha-dong kaolin was studied by sulfuric acid treatment. Raw kaolin was calcined at various temperature (500-110$0^{\circ}C$) and calcined kaolin were treated with sulfuric acid. The tendency of extraction yield of alpha alumina have been investigated by relating reaction time, temperature, and acid concentration. After reaction, precipitates were analyzed by DTA, TGA, and identified alpha alumina by X-ray diffractometer with calcined sample at 120$0^{\circ}C$. The results were as follows; 1. The optimum calcination temperature was 800-86$0^{\circ}C$. 2. The most suitable extracting conditions of alpha alumina were 40 wt%-$H_2SO_4$, 2-3 hours acid-treating time and 8$0^{\circ}C$ acid-treating temperature. 3. Precipitates were composed of $(NH_4)_2SO_4$, $Al_2SO_4(OH)_4$ 5-7 $H_2O$ and $Al(OH)_3$.

  • PDF

Experimental & computational study on fly ash and kaolin based synthetic lightweight aggregate

  • Ipek, Suleyman;Mermerdas, Kasim
    • Computers and Concrete
    • /
    • v.26 no.4
    • /
    • pp.327-342
    • /
    • 2020
  • The objective of this study is to manufacture environmentally-friendly synthetic lightweight aggregates that may be used in the structural lightweight concrete production. The cold-bonding pelletization process has been used in the agglomeration of the pozzolanic materials to achieve these synthetic lightweight aggregates. In this context, it was aimed to recycle the waste fly ash by employing it in the manufacturing process as the major cementitious component. According to the well-known facts reported in the literature, it is stated that the main disadvantage of the synthetic lightweight aggregate produced by applying the cold-bonding pelletization technique to the pozzolanic materials is that it has a lower strength in comparison with the natural aggregate. Therefore, in this study, the metakaolin made of high purity kaolin and calcined kaolin obtained from impure kaolin have been employed at particular contents in the synthetic lightweight aggregate manufacturing as a cementitious material to enhance the particle crushing strength. Additionally, to propose a curing condition for practical attempts, different curing conditions were designated and their influences on the characteristics of the synthetic lightweight aggregates were investigated. Three substantial features of the aggregates, specific gravity, water absorption capacity, and particle crushing strength, were measured at the end of 28-day adopted curing conditions. Observed that the incorporation of thermally treated kaolin significantly influenced the crushing strength and water absorption of the aggregates. The statistical evaluation indicated that the investigated properties of the synthetic lightweight aggregate were affected by the thermally treated kaolin content more than the kaoline type and curing regime. Utilizing the thermally treated kaolin in the synthetic aggregate manufacturing lead to a more than 40% increase in the crushing strength of the pellets in all curing regimes. Moreover, two numerical formulations having high estimation capacity have been developed to predict the crushing strength of such types of aggregates by using soft-computing techniques: gene expression programming and artificial neural networks. The R-squared values, indicating the estimation performance of the models, of approximately 0.97 and 0.98 were achieved for the numerical formulations generated by using gene expression programming and artificial neural networks techniques, respectively.

Effect of Meta Kaolin addition to Activation of waste concrete sludge

  • 황규홍;김재준;연상흠
    • Cement Symposium
    • /
    • no.32
    • /
    • pp.217-221
    • /
    • 2005
  • The utilization of calcined clay, in the form of meta kaolin, as a pozzolanic for mortar and concrete has received considerable attention in recent years. so, the influence of waste concrete sludge and meta kaolin on cement concrete strength has been stud

  • PDF

Densification Behaviour and Strengthening of Mullite/Ziroconia Composite with Addition of $ZrO_2$ or $ZrSiO_4$ ($ZrO_2$$ZrSiO_4$ 첨가에 따른 Mullite/Zirconia 복합체의 치밀화 거동 및 강도 증진)

  • 김인섭;이승석;박주석;이경희;이병하
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.10
    • /
    • pp.1080-1086
    • /
    • 1999
  • Mullite/zirconia composite was synthesized by adding zirconia and Zircon to mixture of Hapcheon kaolin(grade pink A) and aluminium nitrate salt in order to enhance strength of the mullite specimens. Kaolin and aluminium nitrate salt was mixed milled and calcined at 100$0^{\circ}C$ and then 5wt% mullite seed was added to increase mullite content. The influence of the additives(ZrO2 and ZrSiO4) and sintering temperature on the strength of the sintered specimens was investigated. The flexural strength of the specimens containing 10wt% zirconia was enhanced from 150MPa without the additive up to 300MPa after heat treatment at 156$0^{\circ}C$ In the case of addition of 15wt% zircon the strength of the specimens systhesized at 1$600^{\circ}C$ was 225 MPa.

  • PDF

Temperature and leaching effects of zeolite-X derived from kaolin

  • Henry E. Mgbemere;Henry Ovri;Anna-Lisa Sargent
    • Advances in materials Research
    • /
    • v.13 no.2
    • /
    • pp.103-114
    • /
    • 2024
  • Zeolites are microporous materials that find applications in different fields due to their numerous interesting properties. This research investigated the effect of leaching on unheated Ifon kaolin in dilute hydrochloric acid and sulphuric acid. The hydrothermal method synthesized zeolite-X type, and the resulting sample was characterized using different techniques. The silica/alumina ratio in the synthesized sample was approximately 5.6, while Infrared spectra confirmed that the synthesized material was Zeolite-X. Based on the X-ray diffraction patterns, other phases were also formed in addition to zeolite-X crystals. Thermogravimetry results indicated that the synthesized zeolite was relatively stable below 500℃, so its weight loss was only 13% after heating to about 200℃. A differential thermal analyzer confirmed this amount of weight loss, and endothermic and exothermic reactions were also observed for the samples calcined respectively at 700 and 900℃. Based on Brunauer-Emmett-Teller (BET) analyses, samples at 700℃ showed slower adsorption-desorption isotherms, pore volume, and sizes than those at 900℃. These results have shown that leaching and calcination temperature significantly affect the type of zeolite produced.

Experimental Evaluation of Hydrate Formation and Mechanical Properties of Limestone Calcined Clay Cement (LC3) According to Calcination Temperature of Low-Quality Kaolin Clay in Korea (국산 저품질 고령토의 소성온도에 따른 석회석 소성점토 시멘트(LC3)의 수화물 생성 및 기계적 특성 평가)

  • Moon, Jae-Geun;Her, Sung-Wun;Cho, Seong-Min;Bae, Sung-Chul
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.252-260
    • /
    • 2022
  • In Korea, low-quality kaolin has significantly greater reserves and superior economic efficiency than high-purity kaolin. However, the utilization is low because it does not match the demand conditions of the market, and it is difficult to find a suitable source of demand. The purpose of this study is to derive the possibility and optimal calcination temperature of domestic low-quality kaolin that can be used as a raw material for limestone plastic clay cement (LC3). Isothermal calorimetry, X-ray diffraction analysis, Thermogravimetric Analysis, and compressive strength tests were conducted to evaluate hydrate generation and mechanical properties of LC3 paste according to calcination temperatures (600 ℃, 700 ℃, 800 ℃, 900 ℃). As a result, although 50 % of the clinker was replaced, the domestic low-quality kaolin clay produced calboaluminate hydrate and C(A)SH from the 3rd day of hydration, showing almost equal or higher strength to OPC, and there was a big difference in strength depending on the firing temperature.

Nitridation Behavior of Kaolin with Reduced Alumina Content Obtained by Acid Treatment (산처리에 의하여 알루미나 함량을 줄인 카올린의 질화거동)

  • 배원태;정원도;조철구
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.5
    • /
    • pp.347-356
    • /
    • 1992
  • Various kaolin samples with different alumina content were prepared from calcined admixture of kaolin and ammonium sulfate by varying the treatment time in sulfuric acid. Samples were nitridated under N2 or N2-H2 atmosphere with changing the amount of added carbon, the reaction time and temperature. As the alumina content lowered, the size of kaolin particles decreased and the specific surface area increased. XRD analysis indicated that ${\alpha}$-quartz remained by decomposition of halloysite and meta-halloysite. Experimental results of nitridation behavior are summerized as follows; 1) Nitridation under N2 atmosphere. With the increase of C/SiO2 ratio and with the decrease of Al2O3 content, disappearance of XRD pattern peaks of mullite, ${\alpha}$-quartz and ${\alpha}$-Al2O3 were accelerated at 1300$^{\circ}C$. SiC was the main phase in the reaction product of acid-treated kaolin samples nitridated at 1300$^{\circ}C$ for 10 hours regardless of C/SiO2 ratio. But the XRD peak intensities of ${\beta}$-Si3N4, ${\beta}$-sialon and SiC did not show much difference when untreated raw kaolin was fired at the same condition. When the ratio of C/SiO2 was 3.5, ${\beta}$-sialon and ${\beta}$-Si3N4 existed in the reaction product of about 22% alumina containing kaolin sample fired at 1350$^{\circ}C$ for 7 hours. Only ${\beta}$-sialon existed in the same sample fired at 1400$^{\circ}C$ for 10 hours. ${\beta}$-sialon was obtained from all of the acid-treated kaolin samples fired at 1400$^{\circ}C$ for 40 hours, but AlN and SiC remained in the untreated kaolin sample. Z value of the ${\beta}$-sialon obtained from the 22% alumina containing kaolin sample fired at 1400$^{\circ}C$ for 40 hours was about 1.3(XRD) and 1.5(EDS). 2) Nitridation under 80N2+2OH2 mixed gas atmosphere with the C/SiO2 ratio of 1 Mullite was not found, but ${\alpha}$-Si3N4, and ${\beta}$-sialon were present in the reaction product of about 22% alumina containing kaolin sample fired at 1300$^{\circ}C$ for 10 hours. When untreated kaolin sample was nitridated at the same condition, mullite remained. AlN and SiC were not found in the reaction product of about 22% alumina containing kaolin sample fired at 1350$^{\circ}C$ for 5 hours. On the other hand, AlN and SiC remained in the product of untreated kaolin fired at the same condition.

  • PDF

The Study on Fabrication of LAS System Ceramics for Thermal Shock Resistance from Silicate Minerals: (I) Preparation of Eucryptite Powders with Sillimanite Group, Kaolin Group Minerals (실리케이트 광물을 이용한 내열충격성 LAS계 세라믹스의 제조에 관한 연구: (I) Sillimanite와 Kaolin족 광물을 이용한 Eucryptite 분말합성)

  • 박한수;조경식;문종수
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.5
    • /
    • pp.572-580
    • /
    • 1994
  • With low thermal expansion coefficients, eucryptite (Li2O.Al2O3.2SiO2) and spodumene (Li2O.Al2O3.4SiO2) in LAS ceramic system show good thermal shock resistance. In this study, sillimanite or kaolin group silicate minerals and Li2CO3 were used as starting materials, and if necessary SiO2 or Al2O3 were added for making stoichiometrically formed specimens. By this process, eucryptite powders were synthesized and characterized. The powder mixtures of lithiumcabonate and silicate minerals calcined at 80$0^{\circ}C$ for 2 hrs were made into powder compacts. $\beta$-Eucryptite single phase was formed via intermediate phases of Li2SiO3 and LiAlO2 et al, by heating at 110$0^{\circ}C$ or 120$0^{\circ}C$ for 10 hrs from those powder compacts. When using the sillimanite group minerals, Virginia kyanite or andalusite was reacted to form eucryptite at 120$0^{\circ}C$and CMK International kyanite were completed at 110$0^{\circ}C$. When kaolin group minerals were used, it was found that the synthesizing temperature (100$0^{\circ}C$) of $\beta$-eucryptite from the mixture of New Zealand white kaolin was lower than that from Hadong pink kaolin (110$0^{\circ}C$). The Microstructure of systhesized powder showed the irregular lump shape such as densed crystallines.

  • PDF