DOI QR코드

DOI QR Code

Conceptual Design of Sandglass-like Separator for Immobilized Anionic Radionuclides Using Particle Tracking Based on Computational Fluid Dynamics

  • 투고 : 2020.07.27
  • 심사 : 2020.09.14
  • 발행 : 2020.09.30

초록

Anionic radionuclides pose one of the highest risks to the long-term safety assessments of disposal repositories. Therefore, techniques to immobilize and separate such anionic radionuclides are of crucial importance from the viewpoints of safety and waste volume reduction. The main objective of this study is to design a separator with minimum pressure disturbance, based on the concept of a conventional cyclone separator. We hypothesize that the anionic radionuclides can be immobilized onto a nanomaterial-based substrate and that the particles generated in the process can flow via water. These particles are denser than water; hence, they can be trapped within the cyclone-type separator because of its design. We conducted particle tracking analysis using computational fluid dynamics (CFD) for the conventional cyclone separator and studied the effects due to the morphology of the separator. The proposed sandglass-like design of the separator shows promising results (i.e., only one out of 10,000 particles escaped to the outlet from the separation zone). To validate the design, we manufactured a laboratory-scale prototype separator and tested it for iron particles; the efficiency was ca. 99%. Furthermore, using an additional magnetic effect with the separator, we could effectively separate particles with ~100% efficiency. The proposed sandglass-like separator can thus be used for effective separation and recovery of immobilized anionic radionuclides.

키워드

참고문헌

  1. G.D. del Cul, W.D. Bostick, D.R. Trotter, and P.E. Osboren, "Technetium-99 removal from process solutions and contaminated groundwater", Sep. Sci. Technol., 28, 551-564 (1993). https://doi.org/10.1080/01496399308019506
  2. S.S. Kim, J.H. Min, M.H. Baik, and G.N. Kim, "Solubilities and major selenium and technetium in the KURT groundwater conditions", J. Nucl. Fuel Cycle Waste Technol., 10(1), 13-19 (2012). https://doi.org/10.7733/jkrws.2012.10.1.013
  3. Y. Hwang and C.-H. Kang, "The development of a safety assessment approach and its implication on the advanced nuclear fuel cycle", Nucl. Eng. Technol., 42(1), 37-46 (2010). https://doi.org/10.5516/NET.2010.42.1.037
  4. Z. Jaworowski, "UNSCEAR on the health effects from Chornobyl", Science, 293, 605-606 (2001). https://doi.org/10.1126/science.293.5530.605b
  5. P.C. Burns, R.C. Ewing, and A. Navrotsky, "Nuclear fuel in a reactor accident", Science, 335, 1184-1188 (2012). https://doi.org/10.1126/science.1211285
  6. Q. Sun, L. Zhu, B. Aguila, P.K. Thallapally, C. Xu, J. Chen, S. Wang, D. Rogers, and S. Ma, "Optimizing radionuclide sequestration in anion nanotraps with record pertechnetate sorption", Nat. Commun., 10, 1-9 (2019). https://doi.org/10.1038/s41467-018-07882-8
  7. C.L. Thorpe, C. Boothman, J.R. Lloyd, G.T.W. Law, N.D. Bryan, N. Atherton, F.R. Livens, and K. Morris, "The interactions of strontium and technetium with Fe(II) bearing biominerals: Implications for bioremediation of radioactively contaminated land", Appl. Geochem., 40, 135-143 (2014). https://doi.org/10.1016/j.apgeochem.2013.11.005
  8. M.E. Bishop, H. Dong, R.K. Kukkadapu, C. Liu, and R.E. Edelmann, "Bioreduction of Fe-bearing clay minerals and their reactivity toward pertechnetate (Tc-99)", Geochim. Cosmochim. Acta, 75, 5229-5246 (2011). https://doi.org/10.1016/j.gca.2011.06.034
  9. M. Ikari, Y. Matsui, Y. Suzuki, T. Matsushita, and N. Shirasaki, "Removal of iodide from water by chlorination and subsequent adsorption on powdered activated carbon", Water Res., 68, 227-237 (2015). https://doi.org/10.1016/j.watres.2014.10.021
  10. M. Gourani, A. Sadighzadeh, and F. Mizani, "Effect of impregnating materials in activated carbon on iodine-131 ($^{131}I$) removal efficiency", Radiat. Prot. Environ., 37, 179-183 (2014). https://doi.org/10.4103/0972-0464.154882
  11. A. Bo, S. Sarina, Z. Zheng, D. Yang, H. Liu, and H. Zhu, "Removal of radioactive iodine from water using $Ag_2O$ grafted titanate nanolamina as efficient adsorbent", J. Hazard. Mater., 246-247, 199-205 (2013). https://doi.org/10.1016/j.jhazmat.2012.12.008
  12. S.D. Balsley, P.V. Brady, J.L. Krumhansl, and H.L. Anderson, "Iodide retention by metal sulfide surfaces: cinnabar and chalcocite", Environ. Sci. Technol., 30, 3025-3027 (1996). https://doi.org/10.1021/es960083c
  13. Y. Liu, P. Gu, Y. Yang, L. Jia, M. Zhang, and G. Zhang, "Removal of radioactive iodide from simulated liquid waste in an integrated precipitation reactor and membrane separator (PR-MS) system", Sep. Purif. Technol., 171, 221-228 (2016). https://doi.org/10.1016/j.seppur.2016.07.034
  14. B. Zheng, X. Liu, J. Hu, F. Wang, X. Hu, Y. Zhu, X. Lv, J. Du, and D. Xiao, "Construction of hydrophobic interface on natural biomaterials for higher efficient and reversible radioactive iodine adsorption in water", J. Hazard. Mater., 368, 81-89 (2019). https://doi.org/10.1016/j.jhazmat.2019.01.037
  15. K. Kosaka, M. Asami, N. Kobashigawa, K. Ohkubo, H. Terada, N. Kishida, and M. Akiba, "Removal of radioactive iodine and cesium in water purification processes after an explosion at a nuclear power plant due to the great east Japan earthquake", Water Res., 46, 4397-4404 (2012). https://doi.org/10.1016/j.watres.2012.05.055
  16. T. Hertzsch, F. Budde, E. Weber, and J. Hulliger, "Supramolecular-wire confinement of $i_{2}$ molecules in channels of the organic zeolite tris(o-phenylenedioxy) cyclotriphosphazene", Angew. Chem. Int. Ed., 41(13), 2281-2284 (2002). https://doi.org/10.1002/1521-3773(20020703)41:13<2281::AID-ANIE2281>3.0.CO;2-N
  17. K.W. Chapman, D.F. Sava, G.J. Halder, P.J. Chupas, and T.M. Nenoff, "Trapping guests within a nanoporous metal-organic framework through pressureinduced amorphization", J. Am. Chem. Soc., 133, 18583-18585 (2011). https://doi.org/10.1021/ja2085096
  18. H. Ji, Y. Zhu, J. Duan, W. Liu, and D. Zhao, "Reductive immobilization and long-term removilization of radioactive pertechetate using bio-macromolecules stabilized zero valent iron nanoparticles", Chinese Chem. Lett., 30, 2163-2168 (2019). https://doi.org/10.1016/j.cclet.2019.06.004
  19. T.-J. Park, S. Banerjee, T. Hemraj-Benny, and S.S. Wong, "Purification strategies and purity visualization techniques for single-walled carbon nanotubes", J. Mater. Chem., 16, 141-154 (2006). https://doi.org/10.1039/B510858F
  20. T.-J. Park, Y.-C. Choi, J.-H. Ryu, J.-K. Lee, J. Lee, J.-Y. Lee, K.-S. Kim, C.-K. Park, C.-S. Lee, S. Yoon, J.-S. Kim, M.-H. Baik, N.-Y. Ko, K.-W. Park, J.-W. Kim, S.-B. Kim, and J.-I. Park, "Development of a carbon nanotube-based immobilization technology for the anlonic radionuclide", Korea Atomic Energy Research Institute Report, KAERI/RR-4394/2017 (2017).
  21. A.A. Vegini, H.F. Meier, J.J. Iess, and M. Mori, "Computational fluid dynamics (CFD) analysis of cyclone separators connected in series", Ind. Eng. Chem. Res., 47, 192-200 (2008). https://doi.org/10.1021/ie061501h
  22. M. Mutha, V. Katkamwar, B. Thirunavukkarasu, R.R. Thundil Karuppa, and P. Sivamuragan, "Numerical validation and study of particulate flow in cyclone separator using commercial computational fluid dynamics code", IOP Conf. Ser. Earth Environ. Sci., 312, 012027 (2019). https://doi.org/10.1088/1755-1315/312/1/012027
  23. K.J. Jung, I.-J. Hwang, and Y.-J. Kim, "Effect of inner wall configurations on the separation efficiency of hydrocyclone", J. Mech. Sci. Technol., 33(11), 5277-83 (2019). https://doi.org/10.1007/s12206-019-1019-1
  24. S. Venkatesh, M. Sakthivel, H. Saranav, N. Saravanan, M. Rathnakumar, and K.K. Santhosh, "Performance investigation of the combined series and parallel arrangement cyclone separator using experimental and CFD approach", Powder Technol., 361, 1070-1080 (2020). https://doi.org/10.1016/j.powtec.2019.10.087
  25. L. Liang, B. Gu, and X. Yin, "Removal of technetium-99 from contaminated groundwater with sorbents and reductive materials", Sep. Technol., 6, 111-122 (1996). https://doi.org/10.1016/0956-9618(96)00148-8