DOI QR코드

DOI QR Code

Actinide Drawdown From LiCl-KCl Eutectic Salt via Galvanic/chemical Reactions Using Rare Earth Metals

  • 투고 : 2020.08.27
  • 심사 : 2020.09.18
  • 발행 : 2020.09.30

초록

This study proposes a method of separating uranium (U) and minor actinides from rare earth (RE) elements in the LiCl-KCl salt system. Several RE metals were used to reduce UCl3 and MgCl2 from the eutectic LiCl-KCl salt systems. Five experiments were performed on drawdown U and plutonium (Pu) surrogate elements from RECl3-enriched LiCl-KCl salt systems at 773 K. Via the introduction of RE metals into the salt system, it was observed that the UCl3 concentration can be lowered below 100 ppm. In addition, UCl3 was reduced into a powdery form that easily settled at the bottom and was successfully collected by a salt distillation operation. When the RE metals come into contact with a metallic structure, a galvanic interaction occurs dominantly, seemingly accelerating the U recovery reaction. These results elucidate the development of an effective and simple process that selectively removes actinides from electrorefining salt, thus contributing to the minimization of the influx of actinides into the nuclear fuel waste stream.

키워드

참고문헌

  1. M.F. Simpson and J.D. Law, Nuclear Fuel Reprocessing, Idaho National Laboratory Technical Report, INL/EXT-10-17753 (2010).
  2. International Atomic Energy Agency, Spent Fuel Reprocessing Options, IAEA Report, IAEA-TECDOC-1587 (2008).
  3. M. Iizuka, "Diffusion Coefficients of Cerium and Gadolinium in Molten LiCl-KCl", J. Electrochem. Soc., 145(1), 84-88 (1998). https://doi.org/10.1149/1.1838216
  4. Z. Wang, D. Rappleye, and M.F. Simpson, "Voltammetric Analysis of Mixtures of Molten Eutectic LiCl-KCl Containing $LaCl_3$ and $ThCl_4$ for Concentration and Diffusion Coefficient Measurement", Electrochim. Acta, 191, 29-43 (2016). https://doi.org/10.1016/j.electacta.2016.01.021
  5. T. Murakami, A. Rodrigues, M. Ougier, M. Iizuka, T. Tsukada, and J-P. Glatz, "Actinides recovery from irradiated metallic fuel in LiCl-KCl melts", J. Nucl. Mater., 466, 502-508 (2015). https://doi.org/10.1016/j.jnucmat.2015.08.045
  6. S.X. Li, S.D. Herrmann, and M.F. Simpson, "Experimental Investigations into U/TRU Recovery Using a Liquid Cadmium Cathode and Salt Containing High Rare Earth Concentrations", Proc. of Global 2009, INL/CON-08-15166, September 6-10, 2009, Paris.
  7. M.F. Simpson, T. Yoo, D. Labrier, M. Lineberry, M. Shaltry, and S. Phongikaroon, "Selective Reduction of Active Metal Chlorides from Molten LiCl-KCl using Luthium drawdown", Nucl. Eng. Technol., 44(7), 767-772 (2012). https://doi.org/10.5516/NET.06.2011.010
  8. M. Kurata, Y. Sakamura, T. Hijikata, and K. Kinoshita, "Distribution behavior of uranium, neptunium, rareearth elements (Y, La, Ce, Nd, Sm, Eu, Gd) and alkaline-earth metals (Sr, Ba) between molten LiC1-KC1 eutectic salt and liquid cadmium or bismuth", J. Nucl. Mater., 227, 110-121 (1995). https://doi.org/10.1016/0022-3115(95)00146-8
  9. T. Kato, T. Inoue, T. Iwai, and Y. Arai, "Separation behaviors of actinides from rare-earths in molten salt electrorefining using saturated liquid cadmium cathode", J. Nucl. Mater., 357, 105-114 (2006). https://doi.org/10.1016/j.jnucmat.2006.06.003
  10. K. Uozumi, Y. Sakamura, K. Kinoshita, T. Hijikata, T. Inoue, and T. Koyama, "Development of Pyropartitioning Process to Recover Minor Actinide Elements from High Level Liquid Waste", Energy Procedia, 7, 437-443 (2011). https://doi.org/10.1016/j.egypro.2011.06.058
  11. H. Moritama, H. Yamana, S. Nishikawa, S. Shibata, N. Wakayama, Y. Miyashita, K. Moritani, and T. Mitsuhashira, "Thermodynamics of reductive extraction of actinides and lanthanides from molten chloride salt into liquid metal", J. Alloy. Compd., 271-273, 587-591 (1998). https://doi.org/10.1016/S0925-8388(98)00165-0
  12. J.-B. Shim, T. Kim, G. Kim, S. Kim, S. Paek, D. Ahn, and S. Lee, "Uranium recovery tests using rare earth metals in LiCl-KCl molten salt", Proc. of Int. Pyroprocessing Research Conference, International Pyroprocessing Research Conference, September 21-23, 2016, Jeju.
  13. P. Bagri, C. Zhang, and M.F. Simpson, "Galvanic reduction of uranium (III) chloride from LiCl-KCl eutectic salt using gadolinium metal", J. Nucl. Mater., 493, 120-123 (2017). https://doi.org/10.1016/j.jnucmat.2017.06.007
  14. K. Fukasawa, A. Uehara, T. Nagai, N. Sato, T. Fujii, and H. Yamana, "Thermodynamic properties of trivalent lanthanide and actinide ionsin molten mixtures of LiCl and KCl", J. Nucl. Mater., 424, 17-22 (2012). https://doi.org/10.1016/j.jnucmat.2012.01.009
  15. J.J. Roy, L.F. Grantham, D.L. Grimmett, S.P. Fusselman, C.L. Krueger, T.S. Storvick, T. Inoue, Y. Sakamura, and N. Takahashi, "Thermodynamic Properties of U, Np, Pu, and Am in Molten LiCl-KCl Eutectic and Liquid Cadmium", J. Electrochem. Soc., 143(8), 2487-2492 (1996). https://doi.org/10.1149/1.1837035
  16. K.C. Marsden and B. Pesic, "Evaluation of the Electrochemical Behaviors of $CeCl_3$ in Molten LiCl-KCl Eutectic Utilizing Metallic Ce as an Anode", J. Electrochem. Soc., 158(6), F111-F120 (2011). https://doi.org/10.1149/1.3575637
  17. S.P. Fusselman, J.J. Roy, D.L. Grimmett, L.F. Grantham, C.L. Krueger, C.R. Nabelek, T.S. Storvick, T. Inoue, T. Hijikata, K. Kinoshita, Y. Sakamura, K. Uozumi, T. Kawai, and N. Takahashi, "Thermodynamic Properties for Rare Earths and Americium in Pyropartitioning Process Solvents", J. Electrochem. Soc., 146(7), 2573-2580 (1999). https://doi.org/10.1149/1.1391974
  18. H. Tang, Y.D. Yan, M.L. Zhang, Y. Xue, Z.J. Zhang, W.C. Du, and H. He, "Electrochemistry of $MgCl_2$ in LiCl-KCl Eutectic Melts", Acta Phys.-Chim. Sinica, 29(8), 1698-1704 (2013). https://doi.org/10.3866/PKU.WHXB201305102
  19. Y. Castrillejo, M.R. Bermejo, A.I. Barrado, R. Pardo, E. Barrado, and A.M. Martinez, "Electrochemical behaviour of dysprosium in the eutectic LiCl-KCl at W and Al electrodes", Electrochim. Acta, 50, 2047-2057 (2005). https://doi.org/10.1016/j.electacta.2004.09.013
  20. I. Barin, Thermochemical Data of Pure Substances, 3rd ed., Wiley-VCH Verlag GmbH, New York (1995).