DOI QR코드

DOI QR Code

Corrosion Behavior of Inconel X-750 for Carbon Anode Oxide Reduction Application

  • 투고 : 2020.04.21
  • 심사 : 2020.07.20
  • 발행 : 2020.09.30

초록

The corrosion behavior of the Inconel X-750 alloy was investigated for its potential application under a Cl2-O2 mixed gas flow in an Ar atmosphere. The corrosion rate was found to be negligible at temperatures up to 400℃ under a flow rate of 30 mL·min-1 Cl2 + 170 mL·min-1 Ar, whereas an exponential increase was observed in the corrosion rate at temperatures greater than 500℃. The suppression of the corrosion reaction due to the presence of O2 was verified experimentally at flow rates of 30 mL·min-1 Cl2 (4.96 g·m-2·h-1), 20 mL·min-1 Cl2 + 10 mL·min-1 O2 (2.02 g·m-2 ·h-1), and 10 mL·min-1 Cl2 + 20 mL·min-1 O2 (1.34 g·m-2·h-1) under a constant Ar flow rate of 170 mL·min-1 at 600℃ for 8 h. The surface morphology analysis results revealed that porous surfaces with tunnel-type holes were produced under the Cl2-O2 mixed-gas condition. Furthermore, the effects of the Cl2 flow rate on the corrosion rate were investigated, indicating that its impact was negligible within the range of 5-30 mL·min-1 Cl2 at 600℃.

키워드

참고문헌

  1. C.E. Stevenson, The EBR-II fuel cycle story, American Nuclear Society, La Grange Park, Illinois (1987).
  2. M. Gonzalez, A. Burak, M.F. Simpson, and S. Guo, "Identification, measurement, and mitigation of key impurities in LiCl-$Li_2O$ used for direct electrolytic reduction of $UO_2$", J. Nucl. Mater., 510, 513-523 (2018). https://doi.org/10.1016/j.jnucmat.2018.08.020
  3. E.-Y. Choi, J. Lee, D.H. Heo, S.K. Lee, M.K. Jeon, S.S. Hong, S.-W. Kim, H.W. Kang, S.-C. Jeon, and J.-M. Hur, "Electrolytic reduction runs of 0.6 kg scale-simulated oxide fuel in a $Li_{2}O$-LiCl molten salt using metal anode shrouds", J. Nucl. Mater., 489, 1-8 (2017). https://doi.org/10.1016/j.jnucmat.2017.03.035
  4. S.D. Herrmann and S.X. Li, "Separation and recovery of uranium metal from spent light water reactor fuel via electrolytic reduction and electrorefining", Nucl. Technol., 171(3), 247-265 (2010). https://doi.org/10.13182/NT171-247
  5. Y. Sakamura and T. Omori, "Electrolytic reduction and electrorefining of uranium to develop pyrochemical reprocessing of oxide fuels", Nucl. Technol., 171(3), 266-275 (2010). https://doi.org/10.13182/NT10-A10861
  6. S.-K. Lee, M.K. Jeon, S.-W. Kim, E.-Y. Choi. J. Lee, S.-S. Hong, S.-C. Oh, and J.-M. Hur, "Evaluation of Pt anode stability in repeated electrochemical oxide reduction reactions for pyroprocessing", J. Radioanal. Nucl. Chem., 316(3), 1053-1058 (2018). https://doi.org/10.1007/s10967-018-5765-9
  7. J.-M. Hur, J.-S. Cha, and E.-Y. Choi, "Can carbon be an anode for electrochemical reduction in a LiCl-$Li_{2}O$ molten salt?", ECS Electrochem. Lett., 3(10), E5-E7 (2014). https://doi.org/10.1149/2.0071410eel
  8. S.-W. Kim, M.K. Jeon, H.W. Kang, S.K. Lee, E.-Y. Choi, W. Park, S.-S. Hong, S.-C. Oh, and J.-M. Hur, "Carbon anode with repeatable use of LiCl molten salt for electrolytic reduction in pyroprocessing", J. Radioanal. Nucl. Chem., 310(1), 463-467 (2016). https://doi.org/10.1007/s10967-016-4786-5
  9. S.-W. Kim, D.H. Heo, S.K. Lee, M.K. Jeon, W. Park, J.-M. Hur, S.-S. Hong, S.-C. Oh, and E.-Y. Choi, "A preliminary study of pilot-scale electrolytic reduction of $UO_2$ using a graphite anode", Nucl. Eng. Technol., 49(7), 1451-1456 (2017). https://doi.org/10.1016/j.net.2017.05.004
  10. M.H. Brown, W.B. Delong, and J.R. Auld, "Corrosion by chlorine and by hydrogen chloride at high temperatures", Ind. Eng. Chem., 39(7), 839-844 (1947). https://doi.org/10.1021/ie50451a008
  11. Y. Ihara, H. Ohgame, and K. Sakiyama, "The corrosion behaviour of iron in hydrogen chloride gas and gas mixtures of hydrogen chloride and oxygen at high temperatures", Corros. Sci., 21(12), 805-817 (1981). https://doi.org/10.1016/0010-938X(81)90023-8
  12. Y. Ihara, H. Ohgame, K. Sakiyama, and K. Hashimoto, "The corrosion behaviour of nickel in hydrogen chloride gas and gas mixtures of hydrogen chloride and oxygen at high temperatures", Corros. Sci., 22(10), 901-912 (1982). https://doi.org/10.1016/0010-938X(82)90060-9
  13. Y. Ihara, H. Ohgame, K. Sakiyama, and K. Hashimoto, "The corrosion behaviour of chromium in hydrogen chloride gas and gas mixtures of hydrogen chloride and oxygen at high temperatures", Corros. Sci., 23(2), 167-181 (1983). https://doi.org/10.1016/0010-938X(83)90114-2
  14. M.K. Jeon, S.-W. Kim, and E.-Y. Choi, "Corrosion behavior of stainless steel 316 for carbon anode oxide reduction application", J. Nucl. Fuel Cycle Waste Technol., 18(2), 169-177 (2020). https://doi.org/10.7733/jnfcwt.2020.18.2.169

피인용 문헌

  1. Corrosion Behavior of Hastelloy C-276 for Carbon-anode-based Oxide Reduction Applications vol.18, pp.3, 2020, https://doi.org/10.7733/jnfcwt.2020.18.3.383