• Title/Summary/Keyword: Inconel X-750

Search Result 12, Processing Time 0.022 seconds

Corrosion Behavior of Superalloys in Hot Molten Salt under Oxidation Atmosphere (고온용융염계 산화분위기에서 초합금의 부식거동)

  • 조수행;임종호;정준호;이원경;오승철;박성원
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.285-291
    • /
    • 2004
  • As a part of assessment of the structural material for the molten salt handling system, corrosion behavior of Inconel 718, X-750, Haynes 75 and Haynes 263 alloys in the molten salt of LiCl-Li$_2$O-O$_2$was investigated in the range of temperature; $650^{\circ}C$, time; 24~168h, $Li_2O$; 3wt%, mixed gas; Ar~10%$O_2$. In the molten salt of LiCl-$Li_2O-O_2$, the order corrosion rate was Haynes 263 < Haynes 75 < Inconel X-750 < Inconel 718. Haynes 263 alloy showed the highest corrosion resistance among the examined alloys. Corrosion products of alloys were as fellows: Haynes 75: $Cr_2O_4$, $NiFe_2O_4$, $LiNiO_2$, $Li_2NiFe_2O_4$, Inconel 718; $Cr_2O_4$, $NiFe_2O_4$, Haynes 263; $Li(Ni,Co)O_2$, $NiCr_2O_4$, $LiTiO_2$, Inconel X-750; $Cr_2O_3$, $NiFe_2O_4$,$FeNi_3$, (Al,Nb,Ti)$O_2$. Haynes 263 showed local corrosion behavior and Haynes 75, Inconel 718 and Inconel X-750 showed uniform corrosion behavior.

  • PDF

Corrosion Behavior of Inconel Alloys in a Hot Lithium Molten Salt under an Oxidizing Atmosphere (고온 리튬용융염계 산화분위기에서 Inconel 합금의 부식거동)

  • Cho, Soo-Hang;Seo, Chung-Seok;Yoon, Ji-Sup;Park, Seoung-Won
    • Korean Journal of Materials Research
    • /
    • v.16 no.9
    • /
    • pp.557-563
    • /
    • 2006
  • The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. So, it is essential to choose the optimum material for the process equipment handling molten salt. In this study, corrosion behavior of Inconel 713LC, MA 754, X-750 and 718 in the molten salt $LiCl-Li_2O$ under an oxidizing atmosphere was investigated at $650^{\circ}C$ for $72{\sim}216$ hours. Inconel 713LC alloy showed the highest corrosion resistance among the examined alloys. Corrosion products of Inconel 713LC were $Cr_2O_3,\;NiCr_2O_4$ and NiO, and those of Inconel MA 754 were $Cr_2O_3\;and\;Li_2Ni_8O_{10}$ while $Cr_2O_3,\;NiFe_2O_4\;and\;CrNbO_4$ were produced from Inconel 718. Also, corrosion products of Inconel X-750 were found to be $Cr_2O_3,\;NiFe_2O_4\;and\;(Cr,Nb,Ti)O_2$. Inconel 713LC showed local corrosion behavior and Inconel MA 754, 718, X-750 showed uniform corrosion behavior.

Use of Guided Waves for Monitoring Material Conditions in Fossil-Fuel Power Plants (판파를 이용한 화력 발전 설비의 물성 평가)

  • Cho, Youn-Ho;Jung, Kyung-Sik;Lee, Jae-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.6
    • /
    • pp.695-700
    • /
    • 2010
  • Material properties of the lock plate, which covers the gas-turbine blade, are studied using ultrasonic guided waves. The lock plate is a crucial part of a gas-turbine power plant. The wave velocity and attenuation coefficient are measured to investigate the changes in the material properties under three heat-treatment conditions. Compared to the destructive mechanical tests, the material characterization of Inconel X-750 can be performed more efficiently and nondestructively by using ultrasonic guided waves; this characterization helps identify the changes occurring in its elastic moduli and Poisson's ratio under different heat-treatment conditions. The wave velocity and hardness of Inconel X-750 are proportional to each other. This nondestructive technique for the measurement of material properties can be widely used in various industries to avoid catastrophic failure. It is also expected that the guided-wave technique can be applied as a new cost- and time-saving inspection tool for longer and wider inspection ranges.

Material Characterization of Lock Plate Using Guided Wave (유도 초음파를 이용한 락 플레이트 물성 평가)

  • Lee, Jae-Sun;Cho, Youn-Ho;Jeong, Kyoung-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.373-379
    • /
    • 2009
  • Presented in this paper is a new experimental technique to measure material properties of lock plate of gas turbine plants by using ultrasonic guided wave. In comparison with the mechanical destructive testings, material characterization of the Inconel x-750 was nondestructively carried out in a more efficient manner to discriminate the change in elastic moduli and the poisson's ratio attributed to the variation of heat treatment condition. The proposed technique shows a satisfactory feasibility via the comparative experiments with the imported lock plate specimens. It is also expected that the guided wave technique can cover a longer and wider range as a new cost-&-time-saving inspection tool due to the interaction with a greater part of specimen, compared to a conventional local point-by-point scheme.

Hot Corrosion Behavior of Superalloys in Lithium Molten Salt under Oxidation Atmosphere (리튬용융염계 산화성분위기에서 초합금의 고온 부식거동)

  • Cho Soo-Hang;Lim Jong-Ho;Chung Jun-Ho;Oh Seung-Chul;Seo Chung-Seok;Park Seoung-Won
    • Korean Journal of Materials Research
    • /
    • v.14 no.11
    • /
    • pp.813-820
    • /
    • 2004
  • The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which is a chemically aggressive environment that is very corrosive for typical structural materials. So, it is essential to choose the optimum material for the process equipment handling molten salt. In this study, corrosion behavior of Haynes 263, 75, and Inconel X-750, 718 in molten salt of $LiCl-Li_{2}O$ under oxidation atmosphere was investigated at $650^{\circ}C\;for\;72\sim360$ hours. At $3\;wt\%\;of\;Li_{2}O$, Haynes 263 alloy showed the highest corrosion resistance among the examined alloys, and up to $8\;wt\%\;of\;Li_{2}O$, Haynes 75 exhibited the highest corrosion resistance. Corrosion products were formed $Li(Ni,Co)O_2,\;LiNiO_2\;and\;LiTiO_2\;and\;Cr_{2}O_3$ on Haynes 263, $Cr_{2}O_3,\;NiFe_{2}O_4,\;LiNiO_2,\;Li_{2}NiFe_{2}O_4,\;Li_{2}Ni_{8}O_10$ and Ni on Haynes 75, $Cr_{2}O_3,\;(Al,Nb,Ti)O_2,\;NiFe_{2}O_4,\;and\;Li_{2}NiFe_{2}O_4$ on Inconel X-750 and $Cr_{2}O_3,\;NiFe_{2}O_4\;and\;CrNbO_4$ on Inconel 718, respectively. Haynes 263 showed local corrosion behavior and Haynes 75, Inconel X-750, 718 showed uniform corrosion behavior.

Corrosion Behavior of Inconel X-750 for Carbon Anode Oxide Reduction Application

  • Jeon, Min Ku;Kim, Sung-Wook;Lee, Sang-Kwon;Choi, Eun-Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.3
    • /
    • pp.355-362
    • /
    • 2020
  • The corrosion behavior of the Inconel X-750 alloy was investigated for its potential application under a Cl2-O2 mixed gas flow in an Ar atmosphere. The corrosion rate was found to be negligible at temperatures up to 400℃ under a flow rate of 30 mL·min-1 Cl2 + 170 mL·min-1 Ar, whereas an exponential increase was observed in the corrosion rate at temperatures greater than 500℃. The suppression of the corrosion reaction due to the presence of O2 was verified experimentally at flow rates of 30 mL·min-1 Cl2 (4.96 g·m-2·h-1), 20 mL·min-1 Cl2 + 10 mL·min-1 O2 (2.02 g·m-2 ·h-1), and 10 mL·min-1 Cl2 + 20 mL·min-1 O2 (1.34 g·m-2·h-1) under a constant Ar flow rate of 170 mL·min-1 at 600℃ for 8 h. The surface morphology analysis results revealed that porous surfaces with tunnel-type holes were produced under the Cl2-O2 mixed-gas condition. Furthermore, the effects of the Cl2 flow rate on the corrosion rate were investigated, indicating that its impact was negligible within the range of 5-30 mL·min-1 Cl2 at 600℃.

CORROSION BEHAVIOR OF NI-BASE ALLOYS IN SUPERCRITICAL WATER

  • Zhang, Qiang;Tang, Rui;Li, Cong;Luo, Xin;Long, Chongsheng;Yin, Kaiju
    • Nuclear Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.107-112
    • /
    • 2009
  • Corrosion of nickel-base alloys (Hastelloy C-276, Inconel 625, and Inconel X-750) in $500^{\circ}C$, 25MPa supercritical water (with 10 wppb oxygen) was investigated to evaluate the suitability of these alloys for use in supercritical water reactors. Oxide scales formed on the samples were characterized by gravimetry, scanning electron microscopy/energy dispersive spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The results indicate that, during the 1000h exposure, a dense spinel oxide layer, mainly consisting of a fine Cr-rich inner layer ($NiCr_{2}O_{4}$) underneath a coarse Fe-rich outer layer ($NiFe_{2}O_{4}$), developed on each alloy. Besides general corrosion, nodular corrosion occurred on alloy 625 possibly resulting from local attack of ${\gamma}$" clusters in the matrix. The mass gains for all alloys were small, while alloy X -750 exhibited the highest oxidation rate, probably due to the absence of Mo.

Deformation and Recrystallization of INCONEL 690 (인코넬 690의 변형 및 재결정)

  • 표은종;허무영
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.10a
    • /
    • pp.167-171
    • /
    • 1995
  • The formation of preferred orientations in cold rolled and recrystallized Inconel 690 sheets was studied by the x-ray texture measurements and TEM observations. The increasing{220} pole intensity in the plane normal at the higher reductions was related to the{110}<112> texture component. The rolling texture of the Inconel 690 was the pure metal type. THe dislocation cells were found in the near{110}<112> oriented grains. The onset of deformation twins in the {112}<111>oriented grains. The onset of deformation twins in the {112}<111> oriented grains. The onset of deformation twins in the {112}<111> oriented grains caused the weakening of {112}<111> and the development of {552}<115> in the rolling texture. The annealing texture of the Inconel 690 sheets was dependent on the annealing temperature. The annealing texture of 750$^{\circ}C$ annealed sheets was similar to the cold rolling texture. The major preferred orientations of the 950$^{\circ}C$ annealed specimens were {112}<110> and {001}<110>. The formation of fine and closely spaced annealing twins in the specimen annealed at 1150$^{\circ}C$ led to the randomization of the annealing texture.

  • PDF

On Dissimilar Friction Welded Joints(STS316L/IN X-750) of Turning Vane Bolt (Turning Vane Bolt의 이종재(STS316L/IN X-750) 마찰용접에 관하여)

  • SHIN KI-SUK;KONG YU-SIK;KIM SEON-JIN;RYOO IN-IL
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.331-336
    • /
    • 2004
  • Dissimilar friction welding were produced using 10mm and 11mm diameter solid bar in Inconel ally(IN X-750) to Stainless steel(STS316L) to investigate their mechanical properties. The main friction welding parameters were selected to endure good quality welds on the basis of visual examination, tensile tests, Virkers hardness surveys of the bond of area and HAZ and macro-structure investigations. The specimens were tested as welded, not heat-treated. The tensile strength of the friction welded steel bars was increased up to $95\%$ of the STS316L base metal under the condition of all heating time. Optimal welding conditions were n=2,000(rpm), $P_1=220(MPa),\;P_2=260(MPa),\;t_1=4(s),\;t_2=4(s)$ when the total upset length is 7(mm).

  • PDF

Radiation damage to Ni-based alloys in Wolsong CANDU reactor environments

  • Kwon, Junhyun;Jin, Hyung-Ha;Lee, Gyeong-Geun;Park, Dong-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.915-921
    • /
    • 2019
  • Radiation damage due to neutrons has been calculated in Ni-based alloys in Wolsong CANDU reactor environments. Two damage parameters are considered: displacement damage, and transmutation gas production. We used the SPECTER and SRIM computer codes in quantifying radiation damage. In addition, damage caused by Ni two-step reactions was considered. Estimations were made for the annulus spacers in a CANDU reactor that are located axially along a fuel channel and made of Inconel X-750. The calculation results indicate that the transmutation gas production from the Ni two-step reactions is predominant as the effective full power year increases. The displacement damage due to recoil atoms produced from Ni two-step reactions accounts for over 30% out of the total displacement damage.