DOI QR코드

DOI QR Code

Isolation and Characterization of Siderophore-Producing Bacteria with Various Plant Growth-Promoting Abilities as a Potential Biocontrol Agent

잠재적 미생물 농약으로서 다양한 식물성장 촉진 활성을 가진 siderophore 생산 세균의 분리와 특성

  • Choi, Seunghoon (Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Institute, Pusan National University) ;
  • Yoo, Ji-Yeon (Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Institute, Pusan National University) ;
  • Park, SungJin (Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Institute, Pusan National University) ;
  • Park, MinJoo (Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Institute, Pusan National University) ;
  • Lee, O-Mi (Plant Quarantine Technology Center, Animal and Plant Quarantine Agency) ;
  • Son, Hong-Joo (Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Institute, Pusan National University)
  • 최승훈 (부산대학교 생명환경화학과 및 생명산업융합연구원) ;
  • 유지연 (부산대학교 생명환경화학과 및 생명산업융합연구원) ;
  • 박성진 (부산대학교 생명환경화학과 및 생명산업융합연구원) ;
  • 박민주 (부산대학교 생명환경화학과 및 생명산업융합연구원) ;
  • 이오미 (농림축산검역본부 식물검역기술개발센터) ;
  • 손홍주 (부산대학교 생명환경화학과 및 생명산업융합연구원)
  • Received : 2020.07.01
  • Accepted : 2020.08.19
  • Published : 2020.09.30

Abstract

To develop eco-friendly microbial inoculants, siderophore-producing bacteria were isolated and identified, and their production characteristics and plant growth-promoting abilities were investigated. A strain S21 was isolated from rhizosphere of Korean perilla (Perilla frutescens) and identified as Enterobacter amnigenus by phenotypic properties and 16S rRNA gene sequencing. The highest siderophore production was obtained in a medium containing 0.5% fructose, 0.1% urea, 0.5% K2HPO4 and 0.1% succinic acid. By using this improved medium, siderophore production increased by 2.5 times compared to that of basal medium. The strain S21 showed insoluble phosphate solubilizing, ammonification and antifungal activities, and also produced hydrolytic enzymes (protease and lipase), indoleacetic acid and 1-aminocyclopropane-1-carboxylate deaminase. Our data suggest that E. amnigenus S21 is a potential candidate that can be used as eco-friendly biocontrol agent and biofertilizer.

Keywords

References

  1. Alexander, D. B., Zuberer, D. A., 1991, Use of chrome azurol-S reagents to evaluate siderophore production by rhizosphere bacteria, Biol. Fert. Soils, 12, 39-45. https://doi.org/10.1007/BF00369386
  2. Arora, N. K., Kang, S. C., Maheshwari, D. K., 2001, Isolation of siderophore-producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut, Curr. Sci., 81, 673-677.
  3. Barrow, G. I., Felthanm, R. K. A., 1993, Cowan and Steel's manual for the identification of medical bacteria, 3rd ed., Cambridge University Press, New York, 94-150.
  4. Butler, A., 2005, Marine siderophores and microbial iron mobilization, Biometals, 18, 369-374. https://doi.org/10.1007/s10534-005-3711-0
  5. Cocking, E. C., 2003, Endophytic colonization of plant roots by nitrogen-fixing bacteria, Plant Soil, 252, 169-175. https://doi.org/10.1023/A:1024106605806
  6. Compant, S., Duffy, B., Nowak, J., Clement, C., Barka, E. I., 2005, Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects, Appl. Environ. Microbiol., 71, 4951-4959. https://doi.org/10.1128/AEM.71.9.4951-4959.2005
  7. Cornelis, P., 2010, Iron uptake and metabolism in pseudomonads, Appl. Microbiol. Biotechnol., 86, 1637-1645. https://doi.org/10.1007/s00253-010-2550-2
  8. Dye, R., Pal, K. K., Bhatt, D. M., Chauhan, S. M., 2004, Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting bacteria, Microbiol. Res., 159, 371-394. https://doi.org/10.1016/j.micres.2004.08.004
  9. Gerhardt, P., Murray, R. G. E., Costilow, R. N., Nester, E. W., Wood, W. A., Krieg, N. R., Phillips, G. B., 1981, Manual of methods for general bacteriology, American Society for Microbiology, Washington, D.C.
  10. Hider, R., Kong, X., 2010, Chemistry and biology of siderophores, Nat, Prod, Rep., 27, 637-657. https://doi.org/10.1039/b906679a
  11. Holt, J. G., Krieg, N. R., Sneath, P. H. A., Staley, J. T., Williams, S. T., 1994, Bergey's Manual of Determinative Bacteriology, The Williams and Wilkins Co., Baltimore.
  12. Hopkinson, B. M., Morel, F. M., 2009, The role of siderophores in iron acquisition by photosynthetic marine microorganisms, Biometals, 4, 659-669. https://doi.org/10.1007/s10534-009-9235-2
  13. Miethke, M., Marahiel, M. A., 2007, Siderophore-based iron acquisition and pathogen control, Microbiol. Mol. Biol. Rev., 71, 413-451. https://doi.org/10.1128/MMBR.00012-07
  14. Nautiyal, C. S., 1999, An Efficient microbiological growth medium for screening phosphate solubilizing microorganisms, FEMS Microbiol. Lett., 170, 265-270. https://doi.org/10.1111/j.1574-6968.1999.tb13383.x
  15. Pandey, P., Kang, S. C., Gupta, C. P., Maheshwari, D. K., 2005, Rhizosphere competent Pseudomonas aeruginosa GRC1 produces characteristic siderophore and enhances growth of Indian mustard (Brassica campestris), Curr. Microbiol., 51, 303-309. https://doi.org/10.1007/s00284-005-0014-1
  16. Paul, D., Lade, H., 2014, Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review, Agron. Sustain. Dev., 34, 737-752. https://doi.org/10.1007/s13593-014-0233-6
  17. Penrose, D. M., Glick, B. R., 2003, Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria, Physiol. Plant., 118, 10-15. https://doi.org/10.1034/j.1399-3054.2003.00086.x
  18. Reid, R. T., Live, D. H., Faulkner, D. J., Butler. A. A., 1993, Siderophore from a marine bacterium with an exceptional ferric ion affinity constant, Nature, 366, 455-458. https://doi.org/10.1038/366455a0
  19. Saha, R., Saha, N., Donofrio, R. S., Bestervelt, L. L., 2013, Microbial siderophores: a mini review, J. Basic. Microbiol., 52, 1-15. https://doi.org/10.1002/jobm.201290001
  20. Sasirekha, B., Srividya, S., 2016, Siderophore production by Pseudomonas aeruginosa FP6, a biocontrol strain for Rhizoctonia solani and Colletotrichum gloeosporioides causing diseases in chilli, Agric. Nat. Resour., 50, 250-256.
  21. Sayyed, R. Z., Badgujar, M. D., Sonawane, H. M., Mhaske, M. M., Chincholkar, S B., 2005, Production of microbial iron chelators (siderophores) by fluorescent pseudomonads, Indian J. Biotechnol., 4, 484-490.
  22. Sayyed, R. Z., Chincholkar, S. B., 2010, Growth and siderophore production Alcaligenes faecalis is influenced by heavy metals. Indian J. Microbiol., 50, 179-182. https://doi.org/10.1007/s12088-010-0021-1
  23. Schwyn, B., Neilands, J. B., 1987, Universal chemical assay for the detection an determination of siderophores, Anal. Biochem., 160, 46-56.
  24. Sharma, S. B., Sayyed, R. Z., Trivedi, M. H., Gobi, T. A., 2013, Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils, SpringerPlus, 2, 587-602. https://doi.org/10.1186/2193-1801-2-587
  25. Sharma, T., Kumar, N., Rai, N., 2016, Production and optimization of siderophore producing Pseudomonas species isolated from Tarai region of Uttarakhand, Int. J. Pharma. Bio. Sci., 7, 306-314.
  26. Sheng, M., Jia, H., Zhang, G., Zeng, L., Zhang, T., Long, Y., Lan, J., Hu, Z., Zeng, Z., Wang, B., Liu, H., 2020, Siderophore production by rhizosphere biological control bacteria Brevibacillus brevis GZDF3 of Pinellia ternata and its antifungal effects on Candida albicans, J. Microbiol. Biotechnol., 30, 689-699. https://doi.org/10.4014/jmb.1910.10066
  27. Spaepen, S., Vanderleyden, J., Remans, R., 2007, Indole-3-acetic acid in microbial and microorganism-plant signaling, FEMS Microbiol. Rev., 31, 425-448. https://doi.org/10.1111/j.1574-6976.2007.00072.x
  28. Sulochana, M. B., Jayachandra, S. Y., Kumar, S. A., Parameshwar, A. B., Reddy, K. M., Dayanand, A., 2014, Siderophore as a potential plant growth-promoting agent produced by Pseudomonas aeruginosa JAS-25, Appl. Biochem. Biotechnol., 174, 297-308. https://doi.org/10.1007/s12010-014-1039-3
  29. Tang, Y. W., Bonner, J., 1947, The enzymatic inactivation of indoleacetic acid I. some characteristics of the enzyme contained in pea seedlings, Arch. Biochem., 13, 17-25.
  30. Yu, S., Teng, C., Bai, X., Liang, J., Song, T., Dong, L., Jin, Y., Qu, J., 2017, Optimization of siderophore production by Bacillus sp. PZ-1 and its potential enhancement of phytoextraction of Pb from soil, J. Microbiol. Biotechnol., 27, 1500-1512. https://doi.org/10.4014/jmb.1705.05021