DOI QR코드

DOI QR Code

Soil CO2 Efflux Dynamics in Response to Fertilization in Pinus densiflora and Quercus variabilis Stands

소나무와 굴참나무 임분의 시비에 따른 토양 CO2 방출 동태

  • Baek, Gyeongwon (Department of Forest Resources, Gyeongnam National University of Science and Technology) ;
  • Kim, Choonsig (Department of Forest Resources, Gyeongnam National University of Science and Technology)
  • 백경원 (경남과학기술대학교 산림자원학과) ;
  • 김춘식 (경남과학기술대학교 산림자원학과)
  • Received : 2020.06.30
  • Accepted : 2020.09.01
  • Published : 2020.09.30

Abstract

This study compared soil CO2 efflux rates after fertilization, in Pinus densiflora and Quercus variabilis stands. Compound fertilizers were applied to the forest floor in March 2016, following a one-year calibration period (from March 2015 to February 2016). In situ soil CO2 efflux rates were measured every month during the two-year study periods, using an infrared gas analyzer with a closed chamber system. Mean annual soil CO2 efflux rates were higher following fertilizer application in the P. densiflora and Q. variabilis stands (P. densiflora: 2.180 μmol m-2 s-1; Q. variabilis: 1.977 μmol m-2 s-1) as compared with the rates measured during the calibration period (P. densiflora: 1.620 μmol m-2 s-1; Q. variabilis: 1.557 μmol m-2 s-1). The mean annual soil CO2 efflux rates in the unfertilized treatments of both stands were not significantly different between the two-year study periods. The Q10 values of fertilized treatments in Q. variabilis stands were higher in the fertilization period (3.41) than in the calibration period (3.14), whereas the Q10 values in P. densiflora stands did not change between the fertilization and calibration periods. The Q10 values of unfertilized treatments in the Q. variabilis stands were lower during the 2016-2017 period (3.69), than in the 2015-2016 period (3.85), whereas the Q10 values in P. densiflora stands were higher during the 2016-2017 period (3.65), than in the 2015-2016 period (3.15). These results indicate that the increase in soil CO2 efflux rates in P. densiflora stands could be more sensitive to fertilization compared with the rates in Q. variabilis stands.

본 연구는 유사한 입지에서 생육한 소나무와 굴참나무 임분을 대상으로 시비에 따른 토양 CO2 방출량을 비교하기 위해 수행하였다. 성숙한 소나무와 굴참나무 임분을 대상으로 시비처리 전 캘리브레이션 기간(2015년 3월~2016년 2월)을 가진 후, 2016년 3월에 복합비료를 표면 시비하였다. 토양 CO2 방출량은 2015년 3월부터 2017년 2월까지 2년 동안 매월 측정하였다. 토양 CO2 방출량의 월별 변동은 굴참나무와 소나무 임분 모두 시비 전(2015~2016년)과 시비 후(2016~2017년) 유사하였다. 연평균 토양 CO2 방출량의 경우 소나무 임분의 시비구는 2015~2016년 1.620 μmol m-2 s-1였으나 2016~2017년 2.180 μmol m-2 s-1로 유의적으로 증가(P < 0.05)하였으며, 굴참나무 임분의 시비구도 2015~2016년 1.557 μmol m-2 s-1에서 2016~2017년 1.977 μmol m-2 s-1로 약 0.420 μmol m-2 s-1 정도 증가하였다. 그러나 비시비구는 두 임분 모두 2015~2016년과 2016~2017년 사이 토양 CO2 방출량에 유의적인 차이가 없었다. Q10 값은 굴참나무 임분의 시비구가 2015~2016년 3.14에서, 2016~2017년 3.41로 증가하였으나 소나무 임분의 시비구는 Q10 값에 변화가 없었다. 비시비구의 Q10 값의 경우 굴참나무 임분은 2015~2016년에 3.85였으나, 2016~2017년은 3.69로 감소하였으며, 소나무 임분은 2015~2016년은 3.15였으나, 2016~2017년은 3.65로 증가하였다. 본 연구 결과에 따르면 유사한 입지환경에서 생육한 소나무와 굴참나무 임분의 토양 CO2 방출량은 시비 후 증가하였으며, 시비에 따른 토양 CO2 방출은 소나무 임분이 굴참나무 임분에 비해 반응이 크게 나타났다.

Keywords

References

  1. Bond-Lamberty, B. and Thomson, A. 2010. Temperatureassociated increases in the global soil respiration record. Nature 464: 579-582. https://doi.org/10.1038/nature08930
  2. Borken, W., Xu, Y.J., Davidson, E.A. and Beese, F. 2002. Site and temporal variation of soil respiration in European beech, Norway spruce, and Scots pine forests. Global Change Biology 8(12): 1205-1216. https://doi.org/10.1046/j.1365-2486.2002.00547.x
  3. Bowden, R.D., Davidson, E., Savage, K., Arabia, C. and Steudler, P. 2004. Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest. Forest Ecology and Management 196(1): 43-56. https://doi.org/10.1016/j.foreco.2004.03.011
  4. Bravo, F., LeMay, V., Jandl, R. and von Gadow, K. 2008. Managing Forest Ecosystems: The Challenge of Climate Change. Springer. pp. 338.
  5. Deng, Q., Zhou, G., Liu, J., Liu, S., Duan, H. and Zhang, D. 2010. Responses of soil respiration to elevated carbon dioxide and nitrogen addition in young subtropical forest ecosystems in China. Biogeosciences 7(1): 315-328. https://doi.org/10.5194/bg-7-315-2010
  6. Epron, D., Farque, L., Lucot, É. and Badot, P.M. 1999. Soil $CO_2$ efflux in a beech forest: dependence on soil temperature and soil water content. Annals of Forest Science 56(3): 221-226. https://doi.org/10.1051/forest:19990304
  7. Erickson, H., Keller, M. and Davidson, E.A. 2001. Nitrogen oxide fluxes and nitrogen cycling during postagricultural succession and forest fertilization in the humid tropics. Ecosystems 4(1): 67-84. https://doi.org/10.1007/s100210000060
  8. Fisk, M.C. and Fahey, T.J. 2001. Microbial biomass and nitrogen cycling responses to fertilization and litter removal in young northern hardwood forests. Biogeochemistry 53(2): 201-223. https://doi.org/10.1023/A:1010693614196
  9. Gao, H., Hrachowitz, M., Schymanski, S.J., Fenicia, F., Sriwongsitanon, N. and Savenije, H.H.G. 2014. Climate controls how ecosystems size the root zone storage capacity at catchment scale. Geophysical Research Letters 41(22): 7916-7923. https://doi.org/10.1002/2014GL061668
  10. IPCC (Intergovernmental Panel on Climate Change). 2018. Summary for Policymakers. In: Global Warming of $1.5^{\circ}C$.
  11. Ishizuka, S., Sakata, T., Sawata, S., Ikeda, S., Sakai, H., Takenaka, C., Tamai, N., Onodera, S., Shimizu, T., Kan-na, K., Tanaka, N. and Takahashi, M. 2009. Methane uptake rates in Japanese forest soils depend the oxidation ability of topsoil, with a new estimate for global methane uptake in temperate forest. Biogeochemistry 92(3): 281-295. https://doi.org/10.1007/s10533-009-9293-0
  12. Jandl, R., Lindner, M., Vesterdal, L., Bauwens, B., Baritz, R., Hagedorn, F., Johnson, D. W., Minkkinen, K. and Byrne, K.A. 2007. How strongly can forest management influence soil carbon sequestration? Geoderma 137(3-4): 253-268. https://doi.org/10.1016/j.geoderma.2006.09.003
  13. Janssens, I.A., Dieleman, W., Luyssaert, S., Subke, J.A., Reichstein, M., Ceulemans, R., Ciais, P., Dolman, A.J., Grace, J., Matteucci, G., Papale, D., Piao, S.L., Schulze, E.D., Tang, J. and Law, B.E. 2010. Reduction of forest soil respiration in response to nitrogen deposition. Nature Geoscience 3: 315-322. https://doi.org/10.1038/ngeo844
  14. Jeong, J.H., Goo, K.S., Lee, C.H., Won, H.G., Byun, J.O. and Kim, C. 2003. Physico-chemical properties of Korean forest soils by parent rocks. Journal of Korean Forest Society 92(3): 254-262.
  15. Jeong, J., Kim, C., Lee, K.S., Bolan, N.S. and Naidu, R. 2013. Carbon storage and soil $CO_2$ efflux rates at varying degrees of damage from pine wilt disease in red pine stands. Science of the Total Environment 465: 273-278. https://doi.org/10.1016/j.scitotenv.2012.11.080
  16. Jeong, J., Bolan, N. and Kim, C. 2016. Heterotrophic soil respiration affected by compound fertilizer types in red pine (Pinus densiflora S. et Z.) stands of Korea. Forests 7(12): 309. https://doi.org/10.3390/f7120309
  17. Jeong, J., Jo, C.G., Baek, G.W., Park, J.H., Ma, H.S., Yoo, B.O. and Kim, C. 2017. Soil and the foliage nutrient status following soil amendment applications in a Japanese cypress (Chamaecyparis obtusa Endlicher) plantation. Journal of Sustainable Forestry 36(3): 289-303. https://doi.org/10.1080/10549811.2017.1296778
  18. Kalra, Y.P. and Maynard, D.G 1991. Methods manual for forest soil and plant analysis. Forestry Canada, Northwest Region, Northern Forestry Centre, Edmonton, Alberta. Information Report NOR-X-319E. pp. 116.
  19. Kim, C. 2008. Soil carbon storage, litterfall and $CO_2$ efflux in fertilized and unfertilized larch (Larix leptolepis) plantations. Ecological Research 23(4): 757-763. https://doi.org/10.1007/s11284-007-0436-2
  20. Konda, R., Ohta, S., Ishizuka, S., Arai, S., Ansori, S., Tanaka, N. and Hardjono, A. 2008. Spatial structures of $N_2O$, $CO_2$ and $ CH_{4}$ fluxes from Acacia mangium plantation soils during a relatively dry season in Indonesia. Soil Biology and Biochemistry 40(12): 3021-3030. https://doi.org/10.1016/j.soilbio.2008.08.022
  21. Lee, K.H. and Jose, S. 2003. Soil respiration, fine root production, and microbial biomass in cottonwood and loblolly pine plantations along a nitrogen fertilization gradient. Forest Ecology and Management 185(3): 263-273. https://doi.org/10.1016/S0378-1127(03)00164-6
  22. Liu, J., Bowman, K.W., Schimel, D.S., Parazoo, N.C., Jiang, Z., Lee, M., Bloom, A.A., Wunch, D., Frankenberg, C., Sun, Y., O'Dell, C.W., Gurney, K.R., Menemenlis, D., Gierach, M., Crisp, D. and Eldering, A. 2017. Contrasting carbon cycle responses of the tropical continents to the 2015-2016 El Nino. Science 358(6360): eaam5690. https://doi.org/10.1126/science.aam5690
  23. Moscatelli, M.C., Lagomarsino, A., De Angelis, P. and Grego, S. 2008. Short- and medium-term contrasting effects of nitrogen fertilization on C and N cycling in a poplar plantation soil. Forest Ecology and Management 255(3-4): 447-454. https://doi.org/10.1016/j.foreco.2007.09.012
  24. Nishina, K., Takenaka, C. and Ishizuka, S. 2009. Relationship between $N_2O$ and NO emission potentials and soil properties in Japanese forest soils. Soil Science and Plant Nutrition 55(1): 203-214. https://doi.org/10.1111/j.1747-0765.2008.00347.x
  25. Oertel, C., Matschullat, J., Zurba, K., Zimmermann, F. and Erasmi, S. 2016. Greenhouse gas emissions from soils-a review. Geochemistry 76(3): 327-352. https://doi.org/10.1016/j.chemer.2016.04.002
  26. Peng, Y., Thomas, S.C. and Tian, D. 2008. Forest management and soil respiration: Implications for carbon sequestration. Environmental Reviews 16: 93-111. https://doi.org/10.1139/A08-003
  27. Saiz, G., Byrne, K.A., Butterbach-bahl, K., Kiese, R., Blujdea, V. and Farrell, E.P. 2006. Stand age-related effects on soil respiration in a first rotation Sitka spruce chronosequence in central Ireland. Global Change Biology 12(6): 1007-1020. https://doi.org/10.1111/j.1365-2486.2006.01145.x
  28. SAS Institute Inc, 2003. SAS/STAT Statistical Software. Version 9.1. SAS publishing, Cary, NC. USA.
  29. Tyree, M.C., Seiler, J.R., Aust, W.M., Sampson, D.A. and Fox, T.R. 2006. Long-term effects of site preparation and fertilization on total soil $CO_2$ efflux and heterotrophic respiration in a 33-year-old Pinus taeda L. plantation on the wet flats of the Virginia Lower Coastal Plain. Forest Ecology and Management 234(1-3): 363-369. https://doi.org/10.1016/j.foreco.2006.07.021
  30. Vincent, G., Shahriari, A.R., Lucot, E., Badot, P.M. and Epron, D. 2006. Spatial and seasonal variations in soil respiration in a temperate deciduous forest with fluctuating water table. Soil Biology and Biochemistry 38(9): 2527-2535. https://doi.org/10.1016/j.soilbio.2006.03.009
  31. Wallenstein, M.D., McNulty, S., Fernandez, I.J., Boggs, J. and Schlesinger, W.H. 2006. Nitrogen fertilization decreases forest soil fungal and bacterial biomass in three long-term experiments. Forest Ecology and Management 222(1-3): 459-468. https://doi.org/10.1016/j.foreco.2005.11.002
  32. Weil, R.D. and Brady, N.C. 2017. The Nature and Properties of Soils. 15th edition. Pearson. pp. 1104.