DOI QR코드

DOI QR Code

The LaserFIB: new application opportunities combining a high-performance FIB-SEM with femtosecond laser processing in an integrated second chamber

  • Received : 2020.08.03
  • Accepted : 2020.10.06
  • Published : 2020.12.31

Abstract

The development of the femtosecond laser (fs laser) with its ability to provide extremely rapid athermal ablation of materials has initiated a renaissance in materials science. Sample milling rates for the fs laser are orders of magnitude greater than that of traditional focused ion beam (FIB) sources currently used. In combination with minimal surface post-processing requirements, this technology is proving to be a game changer for materials research. The development of a femtosecond laser attached to a focused ion beam scanning electron microscope (LaserFIB) enables numerous new capabilities, including access to deeply buried structures as well as the production of extremely large trenches, cross sections, pillars and TEM H-bars, all while preserving microstructure and avoiding or reducing FIB polishing. Several high impact applications are now possible due to this technology in the fields of crystallography, electronics, mechanical engineering, battery research and materials sample preparation. This review article summarizes the current opportunities for this new technology focusing on the materials science megatrends of engineering materials, energy materials and electronics.

Keywords

Acknowledgement

The authors would like to acknowledge and thank The University of Plymouth, UK for providing the nuclear graphite material sample shown in Fig. 4.

References

  1. Ali, A. M., Ong, A., & Konneh, M. (2005). Micromilling of tungsten carbide using focused ion beam. Proceedings of the International Conference on Mechanical Engineering, AM-24.
  2. R. Barnett, S. Mueller, S. Hiller, F. Perez-Willard, J. Strickland, H. Dong, Rapid production of pillar structures on the surface of single crystal CMSX-4 superalloy by femtosecond laser machining. Opt. Lasers Eng. 127, 105941 (2020) https://doi.org/10.1016/j.optlaseng.2019.105941
  3. Boyd, S., Dornfeld, D., Krishnan, N., & Moalem, M. (2007). Environmental challenges for 45-nm and 32-nm node CMOS logic. Retrieved July 29, 2020, from https://escholarship.org/uc/item/81h91626.
  4. T.L.R.K. Burnett, Large volume serial section tomography by Xe Plasma FIB dual beam microscopy. Ultramicroscopy, 119-129 (2016) https://doi.org/10.1016/j.ultramic.2015.11.001
  5. S.R. Daemi, C. Tan, T. Volkenandt, S.J. Cooper, A. Palacios-Padros, J. Cookson, et al., Visualizing the carbon binder phase of battery electrodes in three dimensions. ACS Appl. Energy Mater. 1(8), 3702-3710 (2018) https://doi.org/10.1021/acsaem.8b00501
  6. M.P. Echlin, T.L. Burnett, A.T. Polonsky, T.M. Pollock, P.J. Withers, Serial sectioning in the SEM for three dimensional materials science. Curr. Opinion Solid State Mater. Sci. 24(2), 100817 (2020) https://doi.org/10.1016/j.cossms.2020.100817
  7. E. Gurevich, Mechanisms of femtosecond LIPSS formation induced by periodic surface temperature modulation. Appl. Surf. Sci. 374, 56-60 (2016) https://doi.org/10.1016/j.apsusc.2015.09.091
  8. A. Hamad, in High energy and short pulse lasers, ed. by R. Viskup. Effects of different laser pulse regimes (nanosecond, picosecond and femtosecond) on the ablation of materials for production of nanoparticles in liquid solution (InTech, Jeneza Trdine, Croatio, 2016), p. 304 https://doi.org/10.5772/61628
  9. Hare, E. (2017). Failure analysis of LEDs. Retrieved July 25, 2020, from SEMLab. com: https://www.semlab.com/papers2017/failure-analysis-of-leds.pdf
  10. M. Kaestner, S. Mueller, T. Gregorich, C. Hartfield, C. Nolan, I. Schulmeyer, Novel workflow for high-resolution imaging of structures in advanced 3D and fan-out packages, China Semiconductor Technology International Conference (CSTIC) (IEEE, Shanghai, 2019), pp. 1-3. https://doi.org/10.1109/CSTIC.2019.8755668
  11. N.L. LaHaye, S.S. Harilal, P.K. Diwakara, A. Hassaneina, The effect of laser pulse duration on ICP-MS signal intensity, elemental fractionation, and detection limits in fs-LA-ICP-MS. J. Anal. At. Spectrom. 28, 1781-1787 (2013) https://doi.org/10.1039/C3JA50200G
  12. Moniri, S., Bale, H., Volkenandt, T., Wang, Y., Gao, J., Lu, T.,. .. Shahani, A. J. (2020). Multi-step crystallization of self-organized spiral eutectics. Small, 16(8), 1906146. https://doi.org/10.1002/smll.201906146
  13. Pfeifenberger, M. J., Mangang, M., Wurster, S., Reiser, J., Hohenwarter, A., Pfleging, W.,. .. Pippan, R. (2017). The use of femtosecond laser ablation as a novel tool for rapid micro-mechanical sample preparation. Mater. Des., 121, 109-118. https://doi.org/10.1016/j.matdes.2017.02.012
  14. A. Poozhikunnath, e. a., Favata, J., Ahmadi, B., Xiong, J., Shahbazmohamadi, S., Bonville, L., & Maric, R. (2019). A correlative and multi-modal approach to analyzing microscopic particulate contaminants in carbon black. Microsc. Microanal., 25(S2), 418. https://doi.org/10.1017/S1431927619002824
  15. Schubert TBT (2020). Rapid sample preparation for EBSD analysis. ZEISS Applications White Paper.
  16. Shearing, P. R., Brandon, N. P., Gelb, J., Bradley, R., Withers, P. J., Marquis, A. J.,. .. Harris, S. J. (2012). Multi length scale microstructural investigations of a commercially available li-ion battery electrode. J. Electrochem. Soc., 159(7), A1023. https://doi.org/10.1149/2.053207jes