DOI QR코드

DOI QR Code

Changes of Soil Properties through the Remediation Processes and Techniques for the Restoration of Remediated Soils

오염 토양 정화공정에 의한 토양의 특성 변화 및 정화토의 회복기술

  • Lee, Sang-Woo (Department of Geology and Research Institute of Natural Science (RINS), Gyeongsang National University) ;
  • Lee, Woo-Chun (Department of Geology and Research Institute of Natural Science (RINS), Gyeongsang National University) ;
  • Lee, Sang-Hun (Department of Geology and Research Institute of Natural Science (RINS), Gyeongsang National University) ;
  • Kim, Soon-Oh (Department of Geology and Research Institute of Natural Science (RINS), Gyeongsang National University)
  • 이상우 (경상대학교 자연과학대학 지질과학과 및 기초과학연구소(RINS)) ;
  • 이우춘 (경상대학교 자연과학대학 지질과학과 및 기초과학연구소(RINS)) ;
  • 이상훈 (경상대학교 자연과학대학 지질과학과 및 기초과학연구소(RINS)) ;
  • 김순오 (경상대학교 자연과학대학 지질과학과 및 기초과학연구소(RINS))
  • Received : 2020.08.10
  • Accepted : 2020.08.25
  • Published : 2020.08.28

Abstract

There have been raised other environmental issues related to remediated soils piled up in numerous carry-out processing facilities because a considerable quantity of them have been produced every year, but most of them have not been relevantly reused or recycled. Thus, this article reports the trend of researches on the development of techniques to restore the quality of remediated soils to activate their reuse and recycling. Firstly, the tendency of change in soil properties through remediation processes was looked over, and then the degradation of soil quality was characterized according to the type of remediation processes. Besides, the direction of policy to promote the reuse and recycling of remediated soils was introduced, and finally, the future works needed were suggested. This article was prepared based on the results of the survey of domestic and foreign literature. A number of literature were reviewed to scrutinize the change of soil properties due to remediation processes and diverse techniques for the amendment and restoration of remediated soils. Furthermore, the policies related to the reuse and recycling of remediated soils were arranged with the reference of the first and second versions of the Soil Conservation Master Plan of Korea. The literature survey focused on three kinds of remediation technologies, such as land farming, soil washing, and thermal desorption, which were most frequently used so far in Korea. The results indicate that the tendency of change in soil properties was significantly different depending on the type of remediation processes applied, and the degradation characteristics of soil quality were also totally different between them. The soil amendment and restoration can be categorized as three techniques depending on the type of substances used, such as inorganic, organic, and biological ones. Diverse individual materials have been used, and the soil properties improved or enhanced were dependent on the type of specific materials utilized. However, few studies on the restoration of soil qualities degraded during the remediation processes have not been carried out so far. The second Soil Conservation Master Plan states the quality certification and target management system of remediated soils, and it is expected that their reuse and recycling will be facilitated hereafter. With the consideration of the type of remediation processes implemented and public utility, the restoration technologies of remediated soils should be developed for the vitalization of their reuse and recycling. Besides, practical and specific measures should be taken to support the policy specified in the second Soil Conservation Master Plan and to promote reuse/recycling of remediated soils.

매년 다량 발생되고 있는 정화토가 적절하게 재이용 또는 재활용되지 못하고 반출 처리장에 적치되어 또 다른 환경적 이슈가 되고 있다. 이에 본 논문에서는 이러한 정화토의 재이용 및 재활용을 활성화하기 위하여 필요한 정화토의 토양 질 회복 기술에 대한 연구 및 개발 동향을 조사하였다. 이를 위해 먼저 정화기술별 토양 특성의 변화 양상을 살펴보고, 정화공정에 따른 토양 질의 열화 특성을 파악하였다. 뿐만 아니라 정화토 재이용 및 재활용을 위한 정책적 관련 사항들을 정리하고, 향후 필요한 연구들에 대하여 제안하였다. 본 논문은 국내외 관련 문헌들을 검색하여 작성하였다. 키워드 검색을 통하여 정화기술별 토양 특성의 변화와 토양 개량 및 회복 기술과 연관된 문헌을 조사하였으며, 본문에서는 주로 최근에 발표된 문헌들을 바탕으로 논의하였다. 뿐만 아니라, 제 1, 2차 토양보전기본계획을 참고하여 정화토 재이용 및 재활용과 관련된 정책적 사항들을 정리하였다. 현재까지 국내에서 가장 많이 적용된 토양경작, 토양세척, 열탈착 등을 대상으로 정화공정에 따른 토양의 특성 변화를 정리한 결과, 적용하는 정화기술에 따라서 매우 상이하게 나타나는 것으로 조사되었다. 특히 정화공정을 거치면서 토양 질이 열화되는 양상이 정화기술에 따라서 다르게 나타났다. 토양 개량 및 회복 기술은 크게 무기 개량제, 유기 개량제, 생물학적 개량제 등의 제제를 이용한 방법들로 구분할 수 있으며, 각 개량제에는 다양한 물질들이 활용되고 있고, 각 물질에 따라 개선 또는 향상되는 토양의 특성이 달랐다. 하지만, 각 정화기술별 열화되는 토양 질 회복을 위한 연구들은 현재까지 활발하게 수행되지 않은 것으로 조사되었다. 제 2차 토양보전기본계획에서는 정화토의 품질인증제, 목표관리제 등과 같은 정책적 방안이 명시되어 있음으로써 향후 정화토의 재이용 및 재활용이 촉진될 수 있을 것으로 예상된다. 정화토의 재이용 및 재활용을 위해서는 적용된 정화기술과 미래 용도를 고려한 공공활용성을 담보한 회복 기술들이 개발되어야 할 것으로 판단된다. 이와 더불어 제 2차 토양보전기본계획에서 제시한 정화토의 적극적 활용을 위해서는 이를 뒷받침할 수 있는 구체적이고 세부적인 정책 추진 방안이 마련되어야 할 것이다.

Keywords

References

  1. Abayneh, A. B. and Quanyuan, C. (2018) Surfactant enhanced soil washing for removal of petroleum hydrocarbons from contaminated soils: A Review, Pedosphere, 28(3), 383-410. https://doi.org/10.1016/s1002-0160(18)60027-x
  2. Adams, R. H. and Guzman-Osorioheavily, F. J. (2008) Evaluation of land farming and chemico-biological stabilization for treatment of contaminated sediments in a tropical environment. Int. J. Environ. Sci. Tech., v.5(2), p.169-178. https://doi.org/10.1007/BF03326010
  3. Adriano, D. C., Page, A. L., Elseewi, A. A., Chang, A. and Straughan, I. A. (1980) Utilization and disposal of fly ash and other coal residues in terrestrial ecosystem: a review. J. Environ. Qual., v.9, p.333-344. https://doi.org/10.2134/jeq1980.00472425000900030001x
  4. Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S. S. and Ok, Y. S. (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere, v.99, p.19-33. https://doi.org/10.1016/j.chemosphere.2013.10.071
  5. Ahmaruzzaman, M. (2010) A review on the utilization of fly ash. Prog. Energy Combust. Sci., v.36, p.27-363. https://doi.org/10.1016/j.pecs.2009.11.003
  6. Albiach, R., Canet, R. and Pomares, F., (2000) Ingelmo, F. Microbial biomass content and enzymatic activities after the application of organic amendments to a horticultural soil. Bioresour. Technol., v.75, p.43-48. https://doi.org/10.1016/S0960-8524(00)00030-4
  7. Aleem, M., Hanna, N. and Sabry, S. (2000) Relationship between wheat root characteristics and grain yield in sandy and clay soils. Ann. Agric. Sic., 3(Special), p.977-995.
  8. Ali, H., Khan, E. and Sajad, M. A. (2013) Phytoremediation of heavy metals concepts and applications. Chemosphere, v.91(7), p.869-881(2013). https://doi.org/10.1016/j.chemosphere.2013.01.075
  9. Al-Omran, A. M., Sheta, A. S., Falatah, A. M. and Al-Harbi, A. R. (2005) Effect of drip irrigation on squash (Cucurbita pepo) yield and water-use efficiency in sandy calcareous soils amended with clay deposits. Agric. Water Manage., v.73, p.43-55. https://doi.org/10.1016/j.agwat.2004.09.019
  10. Anastopoulos, I., Massas, I. and Pogka, E.E., Chatzipavlidis, I., Ehaliotis C. (2019) Organic materials may greatly enhance Ni and Pb progressive immobilization into the oxidisable soil fraction, acting as providers of sorption sites and microbial substrates. Geoderma, v.353, p.482-492. https://doi.org/10.1016/j.geoderma.2019.06.035
  11. Angin, D. and Sensoz, S. (2014) Effect of pyrolysis temperature on chemical and surface properties of biochar of rapeseed (Brassica napus L.), Int. J. Phytoremed., 16, 684-693. https://doi.org/10.1080/15226514.2013.856842
  12. Antolin, M. C., Pascual, L., Garcia, C., Polo, A. and Sanchez-Diaz M. (2005) Growth, yield and solute content of barley in soils treated with sewage sludge under semiarid Mediterranean conditions. Field Crop. Res., v.94, p.224-237. https://doi.org/10.1016/j.fcr.2005.01.009
  13. Badia, D. and Marti, C. (2003) Plant ash and heat intensity effects on chemical and physical properties of two contrasting soils. Arid Land Res. Manag., v.17(1), p.23-41. https://doi.org/10.1080/15324980301595
  14. Bandick, A. K. and Dick, R. P. (1999) Field management effects on soil enzyme activities. Soil Biol. Biochem., v.31, p.1471-1479. https://doi.org/10.1016/S0038-0717(99)00051-6
  15. Beesley, L. and Marmiroli, M. (2011) The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar. Environ. Pollut., v.159, p.474-480. https://doi.org/10.1016/j.envpol.2010.10.016
  16. Beesley, L., Moreno-Jimenez, E. and Gomez-Eyles, J. L. (2010) Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multielement polluted soil. Environ. Pollut., v.158(6), p.2282-2287. https://doi.org/10.1016/j.envpol.2010.02.003
  17. Beiyuan, J. Z., Lau, A. Y. T., Tsang, D. C. W., Zhang, W. H., Kao, C. M., Baek, K., Ok, Y. S. and Li, X. D. (2018) Chelant-enhanced washing of CCA-contaminated soil: Coupled with selective dissolution of soil stabilization. Sci. Total Environ., v.612, p.1463-1472. https://doi.org/10.1016/j.scitotenv.2017.09.015
  18. Beiyuan, J. Z., Tsang, D. C. W., Valix, M., Zhang, W. H., Yang, X., Ok, Y. S. and Li, X. D. (2017) Selective dissolution followed by EDDS washing of an e-waste contaminated soil: Extraction efficiency, fate of residual metals, and impact on soil environment. Chemosphere, v.166, p.489-496. https://doi.org/10.1016/j.chemosphere.2016.09.110
  19. Benitez, E., Romero, E., Gómez, M., Gallardo-Lara, F. and Nogales, R. (2001) Biosolids and biosolids-ash as sources of heavy metals in a plant-soil system. Water Air Soil Poll., v.132, p.75-87. https://doi.org/10.1023/A:1012012924151
  20. Benkhelifa, M., Belkhodja, M., Daoud, Y., and Tessier, D. (2008) Effects of Maghnian bentonite on physical properties of sandy soils under semi-arid Mediterranean climate, PK. J. biol. sci. v.11(1), p.17-25.
  21. Bertrand, M., Barot, S., Blouin, M., Whalen, J., de Oliveira, T. and Roger-Estrade, J. (2015) Earthworm services for cropping systems. A review. Agron. Sustain. Dev., v.35, p.553-567. https://doi.org/10.1007/s13593-014-0269-7
  22. Besalatpour, A., Hajabbasi, M. A., Khoshgoftarmanesh, A. H. and Dorostkar, V. (2011) Landfarming process effects on biochemical properties of petroleum contaminated soils. Soil. Sediment. Contam., v.20(2), p234-248. https://doi.org/10.1080/15320383.2011.546447
  23. Biache, C., Mansuy-Huault, L., Faure, P., Munier-Lamy, C. and Leyval, C. (2008) Effects of thermal desorption on the composition of two coking plant soils: impact on solvent extractable organic compounds and metal bioavailability, Environ. Pollut., v.156(3), p.671-677. https://doi.org/10.1016/j.envpol.2008.06.020
  24. Blouin, M., Hodson, M. E., Delgado, E. A., Baker, G., Brussaard, L., Butt, K. R., Dai, J., Dendooven, L., Peres, G., Tondoh, J. E., Cluzeau, D. and Brun, J. J. (2013) A review of earthworm impact on soil function and ecosystem services. Eur. J. Soil Sci., v.64, p.161-182. https://doi.org/10.1111/ejss.12025
  25. Bonanomi, G., Ascoli, R. D, Scotti, R., Gaglione, S. A., Caceres, M.G., Sultana, S., Scelza, R., Rao, M.A. and Zoina, A. (2014) Soil quality recovery and crop yield enhancement by combined application of compost and wood to vegetables grown under plastic tunnels, Agric., Ecosyst. Environ., v.192(1), p.1-7. https://doi.org/10.1016/j.agee.2014.03.029
  26. Bonnard, M., Devin, S., Leyval, C. and Morel, J. L., (2010) Vasseur, P. The influence of thermal desorption on genotoxicity of multipolluted soil. Ecotoxicol. Environ. Saf., v.73(5), p.955-960. https://doi.org/10.1016/j.ecoenv.2010.02.023
  27. Borchardt, G., (1989) Smectites. In: Dixon, J. B., Weed, S. B.(Eds.), Minerals in soil environments, SSSA Book Ser., 1, SSSA. Madison, WI, p.675-727.
  28. Bossolani, J. W., Crusciol, C. A. C., Merloti, L. F., Moretti, L. G., Costa, N. R., Tsai, S. M. and Kuramae, E. E. (2020) Long-term lime and gypsum amendment increase nitrogen fixation and decrease nitrification and denitrification gene abundances in the rhizosphere and soil in a tropical no-till intercropping system. Geoderma, v.375(1), 114476p. https://doi.org/10.1016/j.geoderma.2020.114476
  29. Boyer, S. and Wratten, S. D. (2010) The potential of earthworms to restore ecosystem services after opencast mining - a review. Basic Appl. Ecol., v.11, p.196-203. https://doi.org/10.1016/j.baae.2009.12.005
  30. Butt, K. R. (1999) Inoculation of earthworms into reclaimed soils: the UK experience. Land Degrad. Dev., v.10, p.565-575. https://doi.org/10.1002/(SICI)1099-145X(199911/12)10:6<565::AID-LDR356>3.0.CO;2-K
  31. Butt, K. R. (2008) Earthworms in soil restoration: lessons learned from United Kingdom case studies of land reclamation. Restor. Ecol., v.16, p.637-641. https://doi.org/10.1111/j.1526-100X.2008.00483.x
  32. Byun, K.W. (2019) Soil conditioner and manufacturing method thereof, Korean patent, 10-2023738.
  33. Caires, E. F. and Guimaraes, A. M. (2018) A novel phosphogypsum application recommendation method under continuous no-till management in Brazil. Agron. J., v.110(5), p.1987-1995 https://doi.org/10.2134/agronj2017.11.0642
  34. Caires, E. F., Joris, H. A. W. and Churka, S. (2011) Longterm effects of lime and gypsum additions on no-till corn and soybean yield and soil chemical properties in southern Brazil. Soil Use Manage., v.27(1), p.45-53. https://doi.org/10.1111/j.1475-2743.2010.00310.x
  35. Campisi, T., Abbondanzi, F., Faccini, B., Di Giuseppe, D., Malferrari, D., Coltorti, M., Laurora, A. and Passaglia, E. (2016) Ammonium-charged zeolitite effects on crop growth and nutrient leaching: greenhouse experiments on maize (Zea mays). Catena. v.140, p.66-76. https://doi.org/10.1016/j.catena.2016.01.019
  36. Capowiez, Y., Dittbrenner, N., Rault, M., Triebskorn, R., Hedde, M. and Mazzia, C. (2010) Earthworm cast production as a new behavioural biomarker for toxicity testing. Environ. Pollut., v.158, p.388-393. https://doi.org/10.1016/j.envpol.2009.09.003
  37. Cebron, A., Beguiristain, T., Faure, P., Norini, M. P., Masfaraud, J. F. and Leyval, C. (2009) Influence of vegetation on the in situ bacterial community and polycyclic aromatic hydrocarbon (PAH) degraders in aged PAH-contaminated or thermal-desorptiontreated soil. Appl. Envron. Microbiol., v.75(19), p.6322-6330. https://doi.org/10.1128/AEM.02862-08
  38. Certinini, G., (2005) Effects of fire on properties of forest soils: a review. Oecologia, v.143(1), p.1-10. https://doi.org/10.1007/s00442-004-1788-8
  39. Chaudhary, D. K., Bajagain, R., Jeong, S. W. and Kim, J. (2019) Development of a bacterial consortium comprising oil-degraders and diazotrophic bacteria for elimination of exogenous nitrogen requirement in bioremediation of diesel-contaminated soil. World J. Microbiol. Biotechnol., v.35(7), p.99. https://doi.org/10.1007/s11274-019-2674-1
  40. Chen, S. (2015)Evaluation of Compost Topdressing, Compost Tea and Cultivation on Tall Fescue Quality, Soil Physical Properties and Soil Microbial Activity. MS Thesis. Department of Plant Sciences and Landscaping Architecture, University of Maryland, College Park, College Park, MD.
  41. Chen, Y., Camps-Arbestain, M., Shen, Q., Singh, B. and Cayuela, M. L. (2018) The long-term role of organic amendments in building soil nutrient fertility: a metaanalysis and review. Nutr. Cycl. Agroecosyst., v.111, p.103-125. https://doi.org/10.1007/s10705-017-9903-5
  42. Chintala, R., Mollinedo, J., Schumacher, T. E., Malo, D. D. and Julson, J. L. (2014) Effect of biochar on chemical properties of acidic soil. Archives Agron. Soil Sci., v.60(3), p.393-404.
  43. Choi, H. S., Jung, J. S., Kuk, Y. I., Choi, I. Y. and Jung, S. K. (2019) Effect of Fertigation with Indigenous Microorganism and EM on Soil Chemical and Microbial Properties and Growth of Cherry Tomatoes. J. Korea Organic Resources Recycling Association, v. 27(4), p.15-24. https://doi.org/10.17137/KORRAE.2019.27.4.15
  44. Choi, S. I., Lee, G. T. and Yang, J. K. (2009) Soil pollution management and restoration. Donghwa Tech. Publish., 209p.
  45. Crogger, C. G. (2005) Potential compost benefits for restoration of soils disturbed by urban development, Compost Sci. Util., v.13, p.243-251. https://doi.org/10.1080/1065657X.2005.10702248
  46. Curry, J. P. and Boyle, K. E. (1987) Growth rates, establishment, and effects on herbage yield of introduced earthworms in grassland on reclaimed cutover peat. Biol. Fertil. Soils, v.3, p.95-98. https://doi.org/10.1007/BF00260586
  47. Czaban, J. and Siebielec, G. (2013) Effects of bentonite on sandy soil chemistry in a long-term plot experiment (II); effect on pH, CEC, and macro-and micronutrients. Pol. J. Environ. Stud., v.22(6), p.1669-1676.
  48. Diacono, M. and Montemurro, F. (2010) Long-term effects of organic amendments on soil fertility: a review. Agron. Sustain. Dev., v.30, p.401-422. https://doi.org/10.1051/agro/2009040
  49. Diacono, M. and Montemurro, F. (2018) Long-term effects of organic amendments on soil fertility: a review. Agron. Sustain. (2010) Dev., v.30, p.401-422, in: Ayer, N.W. and Dias, G. Supplying renewable energy for Canadian cement production: life cycle assessment of bioenergy from forest harvest residues using mobile fast pyrolysis units. J. Clean. Prod., v.175, p.237-25. https://doi.org/10.1051/agro/2009040
  50. Dinesh, R., Srinivasan, V., Hamza, S. and Manjusha, A. (2010) Shortterm incorporation of organic manures and biofertilizers influences biochemical and microbial characteristics of soils under an annual crop [Turmeric (Curcuma longa L.)]. Bioresour. Technol., v.101, p.4697-4702. https://doi.org/10.1016/j.biortech.2010.01.108
  51. Dittbrenner, N., Triebskorn, R., Moser, I. and Capowiez, Y. (2010) Physiological and behavioural effects of imidacloprid on two ecologically relevant earthworm species (Lumbricus terrestris and Aporrectodea caliginosa). Ecotoxicology, v.19, p.1567-1573. https://doi.org/10.1007/s10646-010-0542-8
  52. Dixon, J. B. (1989) Kaolin and serpentine group minerals. In: Dixon, J. B., Weed, S. B.(Eds.), Minerals in soil environments, SSSA Book Ser., 1. SSSA, Madison, WI, p.467-525.
  53. Doran, J. W., Fraser, D. G., Culik, M. N. and Liebhardt, W. C. (1988) Influence of alternative and conventional agricultural management on soil microbial process and nitrogen availability. Am. J. Altern. Agric., v.2, p.99-106. https://doi.org/10.1017/S0889189300001739
  54. During, R. A. and Gath, S. (2002) Utilization of municipal organic wastes in agriculture: where do we stand, where will we go?. J. Plant Nutr. Soil Sci., v.165, p.544-556. https://doi.org/10.1002/1522-2624(200208)165:4<544::AID-JPLN544>3.0.CO;2-#
  55. Dzantor, E. K., Pettigrew, H., Adeleke, E. and Hui, D. (2013) Use of Fly Ash as Soil Amendment for Biofuel Feedstock Production with Concomitant Disposal of Waste Accumulations. WOCA, World of Coal Ash Association, Lexington, KY, April p.22-25.
  56. Edwards, C. A. and Bohlen, P. J. (1996) Biology and Ecology of Earthworms. The Influence of Environmental Factors on Earthworms, Champman & Hall, UK, London, p.196-229.
  57. Elbl, J., Makova, J., Javorekova, S., Medo, J., Kintl, A., Losak, T. and Lukas, V. (2019) Response of microbial activities in soil to various organic and mineral amendments as an indicator of soil quality. Agron, v.9, p.485. https://doi.org/10.3390/agronomy9090485
  58. El-Mageed, T. A. A., Rady, M. M., Taha, R. S., El Azeam, S. A., Simpson, C. R. and Semida, W. M. (2020) Effects of integrated use of residual sulfur-enhanced biochar with effective microorganisms on soil properties, plant growth and short-term productivity of Capsicum annuum under salt stress. Scientia Horticulturae, v.261(5), 108930p. https://doi.org/10.1016/j.scienta.2019.108930
  59. Eriksen, J. (2005)Gross sulphur mineralisation-immobilisation turnover in soil amended with plant residues. Soil Biol. Biochem., v.37, p.2216-2224. https://doi.org/10.1016/j.soilbio.2005.04.003
  60. Evanko, C. R. and Dzombak, D. A. (1997) Remediation of metals-contaminated soils and groundwater. GWRTAC technol. eval. report, 28.
  61. Eviner, V. and Chapin, F. (2011) Plant species provide vital ecosystem functions for sustainable agriculture, rangeland management, and restoration. Calif. Agric., v.55(6), p.54-60. https://doi.org/10.3733/ca.v055n06p54
  62. Fanning, D. S., Keramidas, V. Z. and El-Desoky, M. A. (1989) Micas. In: Dixon, J.B., Weed, S. B.(Eds.), Minerals in soil environments, SSSA Book Ser., 1, SSSA. Madison, WI, p.551-634.
  63. Faucette, L. B., Jordan, C. F., Risse, L. M., Cabrera, M., Coleman, D. C. and West, L. T. (2005) Evaluation of stormwater from compost and conventional erosion control practices in construction activities. J. Soil Water Conserv., v.60, p.288-298.
  64. Filho, A. C. A. C. Penn C., Crusciol, C. A. C. and Calonego, J. C. (2017) Lime and phosphogypsum impacts on soil organic matter pools in a tropical Oxisol under long-term no-till conditions. Agric. Ecosyst. Environ., v.241, p.11-23. https://doi.org/10.1016/j.agee.2017.02.027
  65. Forey, E., Chauvat, M., Coulibaly, S. F. M., Langlois, E., Barot, S. and Clause, J. (2018) Inoculation of an ecosystem engineer (Earthworm: Lumbricus terrestris) during experimental grassland restoration: Consequences for above and belowground soil compartments. Appl. Soil Ecol., v.125, p.148-155. https://doi.org/10.1016/j.apsoil.2017.12.021
  66. Fraser, P. M., Beare, M. H., Butler, R. C., Harrison-Kirk, T. and Piercy, J. E. (2003) Interactions between earthworms (Aporrectodea caliginosa), plants and crop residues for restoring properties of a degraded arable soil. Pedobiologia, v.47, p.870-876. https://doi.org/10.1078/0031-4056-00273
  67. Galang, M. A., Markewitz, D. and Morris, L. A. (2010) Soil phosphorus transformations under forest burning and laboratory heat treatments. Geoderma, v.155(3-4), p.401-408. https://doi.org/10.1016/j.geoderma.2009.12.026
  68. Garcia, C., Hernandez, T., Pascual, J. A., Moreno, J. L. and Ros, M. (2000) Microbial activity in soils of SE Spain exposed to degradation and desertification processes: strategies for their rehabilitation. In: Garcia, C., Hernandez, T. (Eds.), Research and Perspectives of Soil Enzymology in Spain. CEBAS, CSIC, Murcia, p.93-143.
  69. Garcia, C., Hernandez, T., Pascual, J. A., Moreno, J. L. and Ros, M. (2000) Microbial activity in soils of SE Spain exposed to degradation and desertification processes-strategies for their rehabilitation. In: C. Garcia, M. T. Hernandez, (Eds.), Research and Perspectives of Soil Enzymology in Spain. Centro de Edafologia y Biologia Aplicada del Segura, Murcia, Spain, p.41-143.
  70. Garcia-Corona, R., Benito, E., Blas, E. D. and Varela, M. E. (2004) Effects of heating on some physical properties related to its hydrological behaviour in two north-western Spanish soils. Int. J. Wildland Fire, v.13(2), p.195-199. https://doi.org/10.1071/WF03068
  71. Getachew, A., Bass, A. M., Nelson, P. N. and Bird, M. I. (2016) Benefits of biochar, compost and biochar-compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Sci. Total Environ., v.543, p.295-306. https://doi.org/10.1016/j.scitotenv.2015.11.054
  72. Gill, J. S., Tisdall, J., Kusnarta Sukartono, I. G. M., and McKenzie, B. M., (2004) Physical properties of a clay loam soil mixed with sand. In: Super Soil 2004: 3rd Australian & New Zealand Soils Conference, University of Sydney, Australia.
  73. Giovannini, G., Lucchesi, S. and Giachetti, M. (1990) Effect of heating on some chemical parameters related to soil fertility and plant growth. Soil Sci., v.149(6), p.344-350. https://doi.org/10.1097/00010694-199006000-00005
  74. Givaudan, N., Wiegand, C., Bot, B. L., Renault, D., Pallois, F., Llopis, S. and Binet, F. (2014) Acclimation of earthworms to chemicals in anthropogenic landscapes, physiological mechanisms and soil ecological implications. Soil Biol. Biochem., v.73, p.49-58. https://doi.org/10.1016/j.soilbio.2014.01.032
  75. Glass, D. W., Johnson, D. W., Blank, R. R. and Miller, W. W. (2008) Factors affecting mineral nitrogen transformations by soil heating: a laboratorysimulated fire study. Soil Sci., v.173(6), p.387-400. https://doi.org/10.1097/SS.0b013e318178e6dd
  76. Gond, D. P., Singh, S., Pal, A. and Tewary, B. K. (2013) Growth, yield and metal residues in Solanum melongena grown in fly ash amended soils. J. Environ. Biol., p.539-544. https://doi.org/10.22438/jeb/41/3/mrn-1199
  77. Gonzalez-Perez, J. A., Gonzalez-Vila, F. J., Almendros, G. and Knicker, H. (2004) The effect of fire on soil organic matter e a review, Environ. Int., v.30(6), p.855-870. https://doi.org/10.1016/j.envint.2004.02.003
  78. Guo, A., Ding, L., Tang, Z., Zhao, Z. and Duan, G. (2019) Microbial response to $CaCO_3$ application in an acid soil in southern China, J. Environ. Sci., 79, 321- 329(2019). https://doi.org/10.1016/j.jes.2018.12.007
  79. Guo, J. H., Liu, X. J., Zhang, Y., Shen, J. L., Han, W. X., Zhang, W. F., Christie, P., Goulding, K. W. T., Vitousek, P. M. and Zhang, F. S. (2010) Significant acidification in major Chinese croplands, Science. v.327, p.1008-1010. https://doi.org/10.1126/science.1182570
  80. Guo, X. F., Zhao, G. H., Zhang, G. X., He, Q. S., Wei, Z. B., Zheng, W., Qian, T. W. and Wu, Q. T. (2018) Effect of mixed chelators of EDTA, GLDA, and citric acid on bioavailability of residual heavy metals in soils and soil properties. Chemosphere, v.209, p.776-782. https://doi.org/10.1016/j.chemosphere.2018.06.144
  81. Guo, X.F., Wei, Z.B., Wu, Q.T., Li, C.P., Qian, T.W. and Zheng, W. (2016) Effect of soil washing with only chelators or combining with ferric chloride on soil heavy metal removal and phytoavailability: field experiments. Chemosphere, v.147, p.412-419. https://doi.org/10.1016/j.chemosphere.2015.12.087
  82. Hahn, P.G., Bullington, L., Larkin, B., LaFlamme, K., Maron, J. L. andLekberg, Y. (2018) Effects of shortand long-term variation in resource conditions on soil fungal communities and plant responses to soil biota. Front. Plant Sci., 9, 1605p. https://doi.org/10.3389/fpls.2018.01605
  83. Han, D.,, Luo, D., Chen, Y. and Wang, G. (2013) Transfer of Cd, Pb, and Zn to water spinach from a polluted soil amended with lime and organic materials. J. Soil. Sediment., v.13, p.1360-1368. https://doi.org/10.1007/s11368-013-0711-5
  84. Hartl, W,, Putz, B. and Erhart, E. (2003) Influence of rates and timing of biowaste compost application on rye yield and soil nitrate levels. Eur. J. Soil Biol., v.39, p.129-139. https://doi.org/10.1016/S1164-5563(03)00028-1
  85. Haynes, R. J. (2009) Reclamation and revegetation of fly ash disposal sites challenges and research needs. J. Environ. Manag., v.90, p.43-53. https://doi.org/10.1016/j.jenvman.2008.07.003
  86. Hazrati, S., Tahmasebi-Sarvestani, Z., Mokhtassi-Bidgoli, A., Modarres-Sanavy, S. A. M., Mohammadi, H. and Nicola, S. (2017) Effects of zeolite and water stress on growth, yield and chemical compositions of Aloe vera L, Agric. Water Manage., v.181, p.66-72. https://doi.org/10.1016/j.agwat.2016.11.026
  87. He, Z. L., Calvert, D. V., Alva, A. K., Li, Y. C. and Banks, D. J. (2002) Clinoptilolite zeolite and cellulose amendments to reduce ammonia volatilization in a calcareous sandy soil. Plant Soil, v.247, p.253-60. https://doi.org/10.1023/A:1021584300322
  88. Heo, H. J. and Lee, M. H. (2002) Surfactant-enhanced soil washing using tween and tergitol series surfactants for Kuwait soil heavily contaminated with crude oil. J. Soil Groundw. Environ., v.20(5), p.26-33. https://doi.org/10.7857/JSGE.2015.20.5.026
  89. Hera, C. (1996) The role of inorganic fertilizers and their management practices. Fertilizer Research, v.43, p.63-81. https://doi.org/10.1007/BF00747684
  90. Higa, T. (1991) Effective microorganisms: a biotechnology for mankind, Proc. First Int. Conf. Kyusei Nat. Farming, p.8-14.
  91. Holland, J. E., Bennett, A. E., Newton, A. C., White, P. J., McKenzie, B. M., George, T. S., Pakeman, R. J., Bqailey, J. S., Fornara, D. A. and Hayes, R. C. (2018) Liming impacts on soils, crops and biodiversity in the UK: a review. Sci. Total Environ., v.610, p.316-332. https://doi.org/10.1016/j.scitotenv.2017.08.020
  92. Hong, S. H., Lee, S. M. and Lee, E. Y. (2011) Bioremediation efficiency in oil contaminated soil using microbial agents. J. Microbiol. Biotechn., v.30(3), p.301-307.
  93. Hooda, P. S. and Alloway, B. J. (1996) The effect of liming on heavy metal concentrations in wheat, carrots and spinach grown on previously sludge-applied soils. J. Agric. Sci., v.127, p.289-294. https://doi.org/10.1017/S0021859600078448
  94. Houben, D., Pircar, J. and Sonnet, P. (2012) Heavy metal immobilization by cost-effective amendments in a contaminated soil: effects on metal leaching and phytoavailability, J. Geochem. Explor., 123, 87-94(2012). https://doi.org/10.1016/j.gexplo.2011.10.004
  95. Hu, C. and Qi, Y. (2013) Long-term effective microorganisms application promote growth and increase yields and nutrition of wheat in China. Eur. J. Agron., v.46, p.63-67. https://doi.org/10.1016/j.eja.2012.12.003
  96. Hu, X., Xue, Y., Long, L. and Zhang, K. (2018) Characteristics and batch experiments of acidand alkali-modified corncob biomass for nitrate removal from aqueous solution. Environ, Sci. Pollut. Res., v.25(20), p.19932-19940. https://doi.org/10.1007/s11356-018-2198-5
  97. Huang, Y. T., Hseu, Z. Y. and Hsi, H. C. (2011) Influences of thermal decontamination on mercury removal, soil properties, and repartitioning of coexisting heavy metals. Chemosphere, v.81, p.1244-1249. https://doi.org/10.1016/j.chemosphere.2011.05.015
  98. Hwang, S., Moon, H., Gi, B. and Yun, S. (2014) A study on promotion of recycling of cleaned soil and improvement of management system i off-site remediation. Policy report, 2014-05.
  99. Im, J. W., Yang, K., Jho, E. H. and Nam, K. P. (2015) Effect of different soil washing solutions on bioavailability of residual arsenic in soils and soil properties. Chemosphere, v.138, p.253-258. https://doi.org/10.1016/j.chemosphere.2015.06.004
  100. Izquierdo, M. and Querol, X. (2012) Review article - leaching behavior of elements from coal combustion fly ash: an overview. Int. J. Coal Geol., v.94, p.54-66. https://doi.org/10.1016/j.coal.2011.10.006
  101. Jayasinghe, G. Y. and Tokashiki, Y. (2012) Influence of coal fly ash pellet aggregates on the growth and nutrient composition of Brassica campestris and physicochemical properties of greysoils in Okinawa. J. Plant Nutr., v.35, p.453-470. https://doi.org/10.1080/01904167.2012.639924
  102. Jelusic, M. and Lestan, D., (2014) Effect of EDTA washing of metal polluted garden soils Part I: toxicity hazards and impact on soil properties. Sci. Total Environ., v.475, p.132-141. https://doi.org/10.1016/j.scitotenv.2013.11.049
  103. Jelusic, M., Vodnik, D., Macek, I. and Lestan, D. (2014) Effect of EDTA washing of metal polluted garden soils Part II: can remediated soil be used as a plant substrate?. Sci. Total Environ., v.475, p.142-152. https://doi.org/10.1016/j.scitotenv.2013.11.111
  104. Jeon, W., Seong, K., Lee, J., Oh, I., Lee, Y. and Ok, Y. S. (2010) Effects of Green Manure and Carbonized Rice Husk on Soil Properties and Rice Growth. Korean J. Soil Sci. Fert., v.43(4), p.484-489.
  105. Jeong, S. W. (2019) Estimation of remediation cost for reducing cancer and non-cancer risk of a fuel contaminated site. J. Korean Soc. Environ. Eng., v.41(5), p.286-291. https://doi.org/10.4491/KSEE.2019.41.5.286
  106. Jez, E. and Lestan, D. (2016) EDTA retention and emissions from remediated soil. Chemosphere, v.151, p.202-209. https://doi.org/10.1016/j.chemosphere.2016.02.088
  107. Jho, E. H., Ryu, H., Shin, D., Kim, Y. J., Choi, Y. J. and Nam, K. P. (2014) Prediction of landfarming period using degradation kinetics of petroleum hydrocarbons: test with artificially contaminated and field-aged soils and commercially available bacterial cultures. J. Soil. Sediment., v.14(1), p.138-145. https://doi.org/10.1007/s11368-013-0786-z
  108. Joghan, A. K., Ghalavand, A., Aghaalikhani, M., Gholamhoseini, M. and Dolatabadian, A. (2012) How organic and chemical nitrogen fertilizers, zeolite, and combinations influence wheat yield and grain mineral content. J. Crop Improv., v.26(1), p.116-129. https://doi.org/10.1080/15427528.2011.616985
  109. Jones, C. G., Lawton, J. H. and Shachak, M. (1994) Organisms as ecosystem engineers. Oikos, v.69, p.373-386. https://doi.org/10.2307/3545850
  110. Jones, D. L., Rousk, J., Edwards-Jones, G., DeLuca, T. H. and Murphy, D. V. (2012) Biocharmediated changes in soil quality and plant growth in a three year field trial. Soil Biol. Biochem., v.45, p.113-124. https://doi.org/10.1016/j.soilbio.2011.10.012
  111. Jouquet, P. Blanchart, E. and Capowiez, Y. (2014) Utilization of earthworms and termites for the restoration of ecosystem functioning. Appl. Soil Ecol., v.73, p.34-40. https://doi.org/10.1016/j.apsoil.2013.08.004
  112. Jung, B. G. Ro, G. H. and Sung, N. C. (2009) Removal characteristics of TPHs and heavy metals in contaminated soil with ultrasonic washing. J. Eviron. Sci. Intl., v.18(4), p473-478.
  113. Kaiser, K. and Zech, W. (2000) Dissolved organic matter sorption by mineral constituents of subsoil clay fractions. J. Plant Nutr. Soil Sci., v.163(5), p.531-535. https://doi.org/10.1002/1522-2624(200010)163:5<531::aid-jpln531>3.0.co;2-n
  114. Karhu, K., Mattila, T., Bergstrom, I. and Regina, K. (2011) Biochar addition to agricultural soil increased CH4 uptake and water holding capacity-Results from a short term pilot field study. Agric. Ecosyst. and Environ., v.140(1-2), p.309-313. https://doi.org/10.1016/j.agee.2010.12.005
  115. Kaurin, A., Cernilogar, Z. and Lestan, D. (2018) Revitalisation of metal-contaminated, EDTA-washed soil by addition of unpolluted soil, compost and biochar: Effects on soil enzyme activity, microbial community composition and abundance. Chemosphere, v.193, p.726-736. https://doi.org/10.1016/j.chemosphere.2017.11.082
  116. Ketterings, Q. M., Bigham, J. M. and Laperche, V. (2000) Changes in soil mineralogy and texture caused by slash-and-burn fires in Sumatra, Indonesia. Soil Sci. Soc. Am. J., v.64(3), p.1108-1117. https://doi.org/10.2136/sssaj2000.6431108x
  117. Khan, A. Z., Nigar, S., Khalil, S. K., Wahab, S., Rab, A., Khattak, M. K. and Henmi, T. (2013) Influence of synthetic zeolite application on seed development profile of soybean grown on allophanic soil. Pak. J. Bot., v.45(3), p.1063-1068.
  118. Khan, M. R. and Singh, W. N. (2001) Effects of soil application of fly ash on the fusarial wilt on tomato cultivars. Int. J. Pest Manag., v.47, p.293-297. https://doi.org/10.1080/096708700110052059
  119. Khorram, M. S., Zhang, W., Lin, D., Zheng, Y., Fang, H. and Yu, Y. (2016) Biochar: a review of its impact on pesticide behavior in soil environments and its potential applications. J. Environ. Sci. (China), v.44, p.269-279. https://doi.org/10.1016/j.jes.2015.12.027
  120. Kiersch, K., Kruse, J., Regier, T. Z. and Leinweber, P. (2012) Temperature resolved alter-ation of soil organic matter composition during laboratory heating as revealed by C and N XANES spectroscopy and Py-FIMS. Thermochim. Acta, v.537, p.36-43. https://doi.org/10.1016/j.tca.2012.02.034
  121. Kim, D., Ahn, B. and Lee, J. (2013) Impact of Environmentally-friendly Organic Agro-Materials on Chemical Properties of Remediated Soils. Korean J. Organic Aari., v.21(4), p.753-767. https://doi.org/10.11625/KJOA.2013.21.4.753
  122. Kim, I. S. and Lee, M. H. (2012) Pilot scale feasibility study for in-situ chemical oxidation using $H_2O_2$ solution conjugated with biodegradation to remediate a diesel contaminated site. J. Hazard. Mater., v.241-242, p.173-181.
  123. Kim, K. H., Kim, K. Y., Kim, J. G., Sa, T. M., Suh, J. S., Shon, B. G., Yang, J. E., Eom, K. C., Lee, S. E., Jung, K. Y., Chung, D. Y., Jung, Y. T., Jung, J. D. and Hyun, H. N. (2008) Soil science. Hyangmunsa, 193p.
  124. Kim, M., Kim, Y., Kang, S., Yun, H. and Hyun, B. (2012) Long-term Application Effects of Fertilizers and Amendments on Changes of Soil Organic Carbon in Paddy Soil. Korean J. Soil Sci. Fert., v.45(6), p.1108-1113. https://doi.org/10.7745/KJSSF.2012.45.6.1108
  125. Kim, Y. K., Jin, S. H., Choi, S. D., Lee, G. D. and Ra, D. G. (2011b) EM effectiveness on remediation of oil contaminated soil. J. Korean Soc. Environ. Technol., v.12(3), p.176-181.
  126. Kim, Y., Lee, S., Ham, S., Kim. H, and Choi, Y. (2011a) Soil Physicochemical Properties by applied with Mixed Ratio Soldier Fly (Hermetia illucens) Casts. Asian J. Turfgrass Sci.,v. 25(1), p.106-111.
  127. Ko, I. W., Chang, Y. Y., Lee, C. H. and Kim, K. W. (2005) Assessment of pilot-scale acid washing of soil contaminated with As, Zn and Ni using the BCR three-step sequential extraction. J. Hazard. Mater., v.127(1), p.1-13. https://doi.org/10.1016/j.jhazmat.2005.06.041
  128. Koh, I. H., Kim, G. S., Chang, Y. Y., Yang, J. K. and Moon, D. H. (2017) Characteristics of agricultural paddy soil contaminated by lead after bench-scale in-situ washing with $FeCl_3$. J. Soil Groundw. Environ., v.22(1), p.18-26. https://doi.org/10.7857/JSGE.2017.22.1.018
  129. KEITI (Korea environmetal industry & technology institute) (2019) Trend analysis and DB construction for soil, groundwater technology, industry, and manpower statistics.
  130. Kranz, C. N., McLaughlin, R. A., Johnson, A., Miller, G. and Heitman, J. L. (2020) The effects of compost incorporation on soil physical properties in urban soils - A concise review, J. Environ. Manage., v.261, 110209p. https://doi.org/10.1016/j.jenvman.2020.110209
  131. Kristensen, A. H., Henriksen, K., Mortensen, L., Scow, K.M. and Moldrup, P. (2010) Soil physical constraints on intrinsic biodegradation of petroleum vapors in a layered subsurface. Vadose Zone J., v.9(1), p.137-147. https://doi.org/10.2136/vzj2009.0010
  132. Kumar, A., Joseph, S., Tsechansky, L., Privat, K., Schreiter, I. J., Schuth, C. and Graber. E. R. (2018) Biochar aging in contaminated soil promotes Zn immobilization due to changes in biochar surface structural and chemical properties. Sci. Total Environ., v.626, p.953-961. https://doi.org/10.1016/j.scitotenv.2018.01.157
  133. Kumari, A., Lal, B. and Rai, U. N. (2016) Assessment of native plant species for phytoremediation of heavy metals growing near NTPC sites, Kahalgaon, India. Int. J. Phytorem., v.18(6), p.592-597. https://doi.org/10.1080/15226514.2015.1086301
  134. Lazanyi, J. (2005) Effects of bentonite on the water budget of sandy soil. Culture Technology for Wheat and Corn. Symp. Int., July p.7-8.
  135. Lee, D. S., Lim, S. S., Park, H. J., Yang, H. I., Park, S. I., Kwak, J. H. and Choi, W. J. (2019) Fly ash and zeolite decrease metal uptake but do not improve rice growth in paddy soils contaminated with Cu and Zn. Environ. Inter., v.129, p.551-564. https://doi.org/10.1016/j.envint.2019.04.032
  136. Lee, M, H., Chung, S. Y., Kang, D. W., Choi, S. L. and Kim, M. C. (2002) Surfactant enhanced in-situ soil flushing pilot test for the soil and groundwater remediation in an oil contaminated site. J. Soil Groundw. Environ., v.7(4), p.77-86.
  137. Lee, M. Y. (2011) Landfarming treatment on aged and freshly diesel-contaminated soils. Ph.D. thesis, Korea University.
  138. Lee, S., Kim, Y., Ham, S,. Lim, H., Choi, Y. and Park, K. (2013) Effect of Soldier Fly Casts Mixed Soil on Change of Soil Properties in Root Zone and Growth of Zoysiagrass. Weed Turf. Sci., v.2(3), p.298-305. https://doi.org/10.5660/WTS.2013.2.3.298
  139. Lehmann, J. (2012) Biochar for environmental management: an introduction Biochar. Environ. Manag. Sci. Tech., v.25, p.15801-15811.
  140. Li, H. Y., Wang, H., Wang, H. T., Xin, P. Y., Xu, X. H., Ma, Y., Liu, W. P., Teng, C. Y., Jiang, C. L., Lou, L. P., Arnold, W., Cralle, L., Zhu, Y. G., Chu, J. F., Givert, J. A. and Zhang, Z. J. (2018) The chemodiversity of paddy soil dissolved organic matter correlates with microbial community at continental scales. Microbiome, v.6, p.187. https://doi.org/10.1186/s40168-018-0561-x
  141. Li, M., Ren, L., Zhang, J., Luo, L., Qin, P., Zhou, Y., Huang, C., Tang, J., Huang, H. and Chen, A. (2019) Population characteristics and influential factors of nitrogen cycling functional genes in heavy metal contaminated soil remediated by biochar and compost. Sci. Tot. Environ., v.651, p.2166-2174. https://doi.org/10.1016/j.scitotenv.2018.10.152
  142. Li, R. R. Duan, N. and Zhang, Y. H., (2017) Co-digestion of chicken manure and microalgae Chlorella 1067 grown in the recycled digestate: nutrients reuse and biogas enhancement. Waste Manag., v.70, p.247-254. https://doi.org/10.1016/j.wasman.2017.09.016
  143. Lim, J. E., Ahmad, M., Usman, A. R., Lee, S. S., Jeon, W., Oh, S., Yang, J. E. and Ok, Y. S. (2013) Effects of natural and calcined poultry waste on Cd, Pb and As mobility in contaminated soil. Environ. Earth Sci., v.69(1), p.11-20. https://doi.org/10.1007/s12665-012-1929-z
  144. Lim, M. W., Von Lau, E. and Poh, P. E. (2016a) A comprehensive guide of remediation technologies for oil contaminated soil e present works and future directions. Mar. Pollut. Bull., v.109, p.14-45. https://doi.org/10.1016/j.marpolbul.2016.04.023
  145. Lim, S. S., Lee, D. S., Kwak, J. H., Park, H. J., Kim, H. Y. and Choi, W. J. (2016b) Fly ash and zeolite amendments increase soil nutrient retention but decrease paddy rice growth in a low fertility soil. J. Soils Sediments, v.16(3), p.756-766. https://doi.org/10.1007/s11368-015-1294-0
  146. Liu, B., Morkved, P. T., Frostegard, A. and Bakken, L. R. (2010) Denitrification gene pools, transcription and kinetics of NO, $N_2O$ and $N_2$ production as affected by soil pH. FEMS Microbiol. Ecol., v.72(3), p.407-417. https://doi.org/10.1111/j.1574-6941.2010.00856.x
  147. Liu, X. Y., Rashti, M. R., Esfandbod, M., Powell, B. and Chen, C. R. (2018) Liming improves soil microbial growth, but trash blanket placement increases labile carbon and nitrogen availability in a sugarcane soil of subtropical Australia. Soil Res., v.56(3), p.235-243. https://doi.org/10.1071/sr17116
  148. Logan, T. J., Lindsay, B. J., Goins, L. E. and Ryan, J. A. (1997) Field assessment of sludge metal bioavailability to crops: sludge rate response. J. Environ. Qual. v.26, p.534-550. https://doi.org/10.2134/jeq1997.00472425002600020027x
  149. Logsdon, S. D., Sauer, P. A. and Shipitalo, M. J. (2017) Compost improves urban soil and water quality. J. Water Resour. Protect., v.9, p.345-357. https://doi.org/10.4236/jwarp.2017.94023
  150. López-Periago, E. Nunez-Delgado, A. and Diaz-Fierros, F. (2002) Attenuation of groundwater contamination caused by cattle slurry: a plot-scale experimental study, Bioresour. Technol., v.84(2), p.105-111. https://doi.org/10.1016/S0960-8524(02)00041-X
  151. López-Periago, E., Nunez-Delgado, A. and Diaz-Fierros, F. (2000) Groundwater contamination due to cattle slurry: modelling infiltration on the basis of soil column experiments. Water Res., vol34(3), p.1017-1029. https://doi.org/10.1016/S0043-1354(99)00226-2
  152. Lukić, B., Panico, A., Huguenot, D., Massimiliano, F., van Hullebusch, E. D. and Esposito, G. (2017) A review on the efficiency of landfarming integrated with composting as a soil remediation treatment. Environ. Technol. Rev., 6(1), 94-116. https://doi.org/10.1080/21622515.2017.1310310
  153. Luo, Y., Dungait, J. A. J., Zhao, X., Brookes, P. C., Durenkamp, M., Li, G. and Lin, Q. (2018) Pyrolysis temperature during biochar production alters its subsequent utilization by microorganisms in an acid arable soil, Land Degrad. Dev., 29, 2183-2188. https://doi.org/10.1002/ldr.2846
  154. Ma, F., Zhang, Q., Xu, D., Hou, D., Li, F. and Gu, Q. (2014) Mercury removal from contaminated soil by thermal treatment with $FeCl_3$ at reduced temperature. Chemosphere, v.117, p.388-393. https://doi.org/10.1016/j.chemosphere.2014.08.012
  155. Mahar, A., Ping, W., Ronghua, L. and Zhang, Z. (2015) Immobilization of lead and cadmium in contaminated soil using amendments: a review. Pedosphere, 25(4), 555-568. https://doi.org/10.1016/S1002-0160(15)30036-9
  156. Mahmood, F., Khan, I., Ashraf, U., Shahzad, T., Hussain, S. Shahid, M., Abid, M. and Ullah, S. (2017) Effects of organic and inorganic manures on maize and their residual impact on soil physico-chemical properties. J. Soil Sci. Plant Nutr., v.17, p.22-32.
  157. Maiti, P. S., Sah, K. D., Gupta, S. K. and Banerjee, S. K. (2001) Evaluation of sewage sludge as a source of irrigation and manure. J. Indian Soc. Soil Sci., v.40, p.168-172.
  158. Maiti, S. K. and Ghosh, D. (2020) Chapter 24 - Plant-soil interactions as a restoration tool, Climate Change and Soil Interactions, p.689-730.
  159. Makino, T. (2014) Heavy metal contamination in Japan. Proc. Int. Forum Soil Groundw., KME (Korea Ministry of Environment), Seoul, Korea, 45p.
  160. Makino, T., Kamiya, T., Takano, H., Itou, T., Sekiya, N., Sasaki, K., Maejima, Y. and Sugahara, K. (2007) Remediation of cadmium-contaminated paddy soils by washing with calcium chloride: verification of on-site washing. Environ. Pollut., v.147, p.112-119. https://doi.org/10.1016/j.envpol.2006.08.037
  161. Makino, T., Takano, Y., Kamiya, T., Itou, T., Sekiya, N., Inahara, M. and Sakurai, Y. (2008) Restoration of cadmium-contaminated paddy soils by washing with ferric chloride: Cd extraction mechanism and benchscale verification. Chemosphere, v.70, p.1035-1043. https://doi.org/10.1016/j.chemosphere.2007.07.080
  162. Makoi, J. H. J. R. and Ndakidemi, P. A. (2008) Selected soil enzymes : Examples of their potential roles in the ecosystem. Afr. J. Biotechnol., v.7(3), p.181-191.
  163. Malekian, R., Abedi-Koupai, J. and Eslamian, S. S. (2011) Influences of clinoptilolite and surfactant-modified clinoptilolite zeolite on nitrate leaching and plant growth. J. Hazard. Mater., v.185, p.970-976. https://doi.org/10.1016/j.jhazmat.2010.09.114
  164. Manya, J. J., (2012) Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs. Environ. Sci. Technol., v.46, 7939p. https://doi.org/10.1021/es301029g
  165. Marashi, A. R. A. and Scullion, J. (2003) Earthworm casts form stable aggregates in physically degraded soils. Biol. Fertil. Soils, v.37, p.375-380. https://doi.org/10.1007/s00374-003-0617-2
  166. Marin, J. A. Hernandez, T. and Garcia, C. (2005) Bioremediation of oil refinery sludge by landfarming in semiarid conditions: Influence on soil microbial activity. Environ. Res., v.98(2), p.185-195. https://doi.org/10.1016/j.envres.2004.06.005
  167. Mattana, S., Petrovicova, B., Landi, L., Gelsomino, A., Cortes, P., Ortiz, O. and Renella, G. (2014) Sewage sludge processing determines its impact on soil microbial community structure and function. Appl. Soil Ecol., v.75, p.150-161. https://doi.org/10.1016/j.apsoil.2013.11.007
  168. Mattigod, S. V., Rai, D., Eary, L. F. and Ainsworth, C. C. (1990) Geochemical factors controlling the mobilization of inorganic constituents from fossil fuel combustion residues: I. Review of the major elements. J. Environ. Qual., v.19, p.188-201. https://doi.org/10.2134/jeq1990.00472425001900020004x
  169. Ministry of Environment (2009) The first Soil Environment Conservation Master Plan.
  170. Ministry of Environment (2020) The second Soil Environment Conservation Master Plan.
  171. Mishra, P., Prasad, S. S., Babu, B. M. and Varalakshmi, L. (2001) Bentonite as an ameliorant in an alfisol a laboratory study. J. Irrig. Drain. Eng., v.127(2), p.118-122. https://doi.org/10.1061/(ASCE)0733-9437(2001)127:2(118)
  172. Mohammadshirazi, F., Brown, V. K., Heitman, J. L. and McLaughlin, R. A. (2016) Effects of tillage and compost amendment on infiltration in compacted soils. J. Soil Water Conserv., v.71(6), p.443-449. https://doi.org/10.2489/jswc.71.6.443
  173. Mojid, M. A., Wyseure, G. C. L. and Mustafa, S. M. T. (2012) Water use efficiency and productivity of wheat as a function of clay amendment. Environ. Control Biol., v.50, p.347-362. https://doi.org/10.2525/ecb.50.347
  174. Moon, D. H., Chang, Y. Y., Lee, M. H., Cheong, K. H., Ji, W. H., Koh, I. H., Choi, Y. L. and Park, J. H. (2016) Soil washing of heavy metal contaminated paddy soil using a $FeCl_3$ solution. Proc. Int. Res. Symp. Eng. Technol., Singapore, p.152-153.
  175. Mudrak, O., Uteseny, K. and Frouz, J. (2012) Earthworms drive succession of both plant and Collembola communities in post-mining sites. Appl. Soil. Ecol., v.62, p.170-177. https://doi.org/10.1016/j.apsoil.2012.08.004
  176. Murphy, P. N. C. (2007) Lime and cow slurry application temporarily increases organic phosphorus mobility in an acid soil. Eur. J. Soil. Sci.,v. 58, p.794-801. https://doi.org/10.1111/j.1365-2389.2006.00869.x
  177. Nair, A. and Ngouajio. M. (2012) Soil microbial biomass, functional microbial diversity, and nematode community structure as affected by cover crops and compost in an organic vegetable production system. Appl. Soil Ecol., v.58, p.45-55. https://doi.org/10.1016/j.apsoil.2012.03.008
  178. Najafinezhad, H., Sarvestani, Z. T., Sanavy, S. A. M. M. and Naghavi, H. (2015) Evaluation of yield and some physiological changes in corn and sorghum under irrigation regimes and application of barley residue, zeolite and superabsorbent polymer. Arch. Agron. Soil Sci., v.61(7), p.891-906. https://doi.org/10.1080/03650340.2014.959938
  179. Ndona, R. K., Friedel, J. K., Spornberger, A., Rinnofner, T. and Jezik, K. (2011) Effective microorganisms' (EM): an effective plant strengthening agent for tomatoes in protected cultivation. Biol. Agric. Hortic., v.27, p.189-203(2011). https://doi.org/10.1080/01448765.2011.9756647
  180. Ning, C., Gao, P., Wang, B., Lin, W., Jiang, N. and Cai, K. (2017) Impacts of chemical fertilizer reduction and organic amendments supplementation on soil nutrient, enzyme activity and heavy metal content. J. Integr. Agric., v.16(8), p.1819-1831. https://doi.org/10.1016/s2095-3119(16)61476-4
  181. Noori, M., Zendehdel, M. and Ahmadi, A. (2006) Using natural zeolite for improvement of soil salinity and crop yield. Toxicol. Environ. Chem. Rev., v.88(1), p.77-84. https://doi.org/10.1080/02772240500457928
  182. Nunez-Delgado, A. Lopez-Periago, E. and Diaz-Fierros-Viqueira, F. (1997) Breakthrough of inorganic ions present in cattle slurry: soil column trials. Water Res., 31(11), 2892-2898. https://doi.org/10.1016/S0043-1354(97)00145-0
  183. Nunez-Delgado, A. Lopez-Periago, E. and Diaz-Fierros-Viqueira, F. (2002) Chloride, sodium, potassium and faecal bacteria levels in surface runoff and subsurface percolates from grassland plots amended with cattle slurry, Bioresour. Technol., 82(3), 261-271. https://doi.org/10.1016/S0960-8524(01)00183-3
  184. Nwaichi, E.O. and Chuku, L.C. (2017) Biological Soil Quality Indicators and Conditioners in a Plant- Assisted Remediation of Crude Oil Polluted Farmland. J. Environ. Prot., v.8(13), DOI: 10.4236/jep.2017.813100.
  185. O'Brien, P. L., DeSutter, T. M. and Wick, F. F. (2018) Thermal remediation alters soil properties - a review, J. Environ. Manage., v.206, p.826-835. https://doi.org/10.1016/j.jenvman.2017.11.052
  186. Oh, T.G. (2004) Phytoremediation of diesel fuel contaminated soil using herbaceous plants. Master thesis, Korea University.
  187. Olson, N. C., Gulliver, J. S., Nieber, J. L. and Kayhanian, M. (2013) Remediation to improve infiltration into compact soils. J. Environ. Manag., v.117, p.85-95. https://doi.org/10.1016/j.jenvman.2012.10.057
  188. Onagwu, B. O. (2019) Organic amendments applied to a degraded soil: short term effects on soil quality indicators. African J. Agric. Res., v.14(4), p.218-225. https://doi.org/10.5897/ajar2018.13457
  189. Othman, N., Irwan, J. M., Hussain, N. and Abdul, S. T. (2011) Bioremediation a potential approach for soil contaminated with polycyclic aromatic hydrocarbons: an overview. Int. J. Sustain. Constr. Eng. Technol., v.2(2), p.48-53.
  190. Ozbahce, A., Tari, A. F., Gonulal, E. and Simsekli, N. (2018) Zeolite for enhancing yield and quality of potatoes cultivated under water-deficit conditions. Potato Res., p.1-13.
  191. Palansooriya, K. N., Shaheen, S. M., Chen, S. S., Tsang, D. C. W., Hashimoto, Y., Hou, D., Bolan, N. S., Rinklebe, J. and Oka, Y. S. (2020) Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. Envrion. Int., v.134, 105046p. https://doi.org/10.1016/j.envint.2019.105046
  192. Pandey, V. C. and Singh, N. (2010) Impact of fly ash incorporation in soil systems. Agric. Ecosyst. Environ., v.136, p.16-27. https://doi.org/10.1016/j.agee.2009.11.013
  193. Pang, Z., Tayyab, M., Kong, C., Hu, C., Zhu, Z., Wei, X. and Yuan, Z. (2019) Liming positively modulates microbial community composition and function of sugarcane fields. Agronomy, v.9(12), 808p. https://doi.org/10.3390/agronomy9120808
  194. Pape, A., Switzer, C., McCosh, C. and Knapp, C. W. (2015) Impacts of thermal and smouldering remediation on plant growth and soil ecology. Geoderma, v.243-244, p.1-9. https://doi.org/10.1016/j.geoderma.2014.12.004
  195. Park, J. E., Lee, B., Lee, S., Kim, S. and Son, A. (2017) Application of enzymatic activity and arsenic respiratory gene quantification to evaluate the ecological functional state of stabilized soils nearby closed mines. J. Korean Soc. Environ. Eng., v.39(5), p.265-276. https://doi.org/10.4491/KSEE.2017.39.5.265
  196. Paul, E. A. and Clark, F. E. (1989) Soil microbiology and biochemistry, Academic Press, San Diego, California, p.32-46.
  197. Peng, Y. and Sun, Y. (2012) Resources characteristics and market situation of bentonites at home and abroad. Metal Mine, v.4, p.95-99.
  198. Pen-Mouratov, S., Shukurov, N., Yu, J., Rakhmonkulova, S., Kodirov, O., Barness, G., Kersten, M. and Steinberger, Y. (2014) Successive development of soil ecosystems at abandoned coal-ash landfills. Ecotoxicology, v.23(5), p.880-897. https://doi.org/10.1007/s10646-014-1227-5
  199. Pousada-Ferradas, Y., Seoane-Labandeira, S., Mora- Gutierrez, A. and Nunez-Delgado, A. (2012) Risk of water pollution due to ash-sludge mixtures: column trials. Int. J. Environ. Sci. Tech., v.9, p.21-29. https://doi.org/10.1007/s13762-011-0014-6
  200. Qayyum, M. F., Rehman, M. Z. U., Ali, S., Rizwan, M., Naeem, A., Maqsood, M. A., Khalid, H., Rinklebe, J. and Ok, Y. S. (2017) Residual effects of monoammonium phosphate, gypsum and elemental sulfur on cadmium phytoavailability and translocation from soil to wheat in an effluent irrigated field. Chemosphere, v.174, p.515-523. https://doi.org/10.1016/j.chemosphere.2017.02.006
  201. Pousada-Ferradas, Y., Seoane-Labandeira, S., Mora- Gutierrez, A. and Nunez-Delgado, A. (2012) Risk of water pollution due to ash-sludge mixtures: column trials. Int. J. Environ. Sci. Tech., v.9, p.21-29. https://doi.org/10.1007/s13762-011-0014-6
  202. Raiesi, F. (2006) Carbon and N mineralization as affected by soil cultivation and crop residue in a calcareous wetland ecosystem in Central Iran. Agric., Ecosyst. Environ., v.112(1), p.13-20. https://doi.org/10.1016/j.agee.2005.07.002
  203. Ram, L. C. and Masto, R. E. (2010) Review: an appraisal of the potential use of fly ash for reclaiming coal mine spoil. J. Environ. Manag., v.91, p.603-617. https://doi.org/10.1016/j.jenvman.2009.10.004
  204. Ram, L. C., Masto, R. E., Singh, S., Tripathi, R. C., Jha, S. K., Srivastava, N. K., Sinha, A. K., Selvi, V. A. and Sinha, A. (2011) An Appraisal of Coal Fly Ash Soil Amendment Technology (FASAT) of Central Institute of Mining and Fuel Research (CIMFR), World Acad. Sci. Eng. Technol., v.76, p.703-714.
  205. Ram, L. C., Singh, S., Masto, R. E., Jha, S. K., Tripathi, R. C., Sinha, A. K., Srivastava, N. K. and Selvi, V. A. (2010) Potential of Indian Fly ashes as Soil Ameliorant: State-of-the-Art, 25th Int. Conf. Solid Waste Techn. and Manag., Philadelphia USA, March p.14-17.
  206. Randhawa, P. S., Condron, L. M., Di, H. J., Sinaj, S. and McLenaghen, R. D. (2005) Effect of green manure addition on soil organic phosphorus mineralisation. Nutr. Cycl. Agroecosyst., v.73, p.181-189. https://doi.org/10.1007/s10705-005-0593-z
  207. Rivas-Perez, I. M., Fernandez-Sanjurjo, M. J., Nunez-Delgado, A., Macias, F., Monterroso, C. and Alvarez-Rodriguez, E. (2016) Aluminum fractionation and speciation in a coal mine dump: twenty years of timecourse evolution. Geoderma, v.273, p.45-53. https://doi.org/10.1016/j.geoderma.2016.03.013
  208. Rivas-Perez, I. M., Fernandez-Sanjurjo, M. J., Nunez-Delgado, A., Monterroso Martinez, C., Macias- Vazquez, F. and Alvarez-Rodriguez, E. (2019) Efficacy of two different reclamation strategies to improve chemical properties and to reduce Al toxicity in a lignite mine dump during a 20-year period, Land Degrad. Dev., v.30, p.658-669. https://doi.org/10.1002/ldr.3253
  209. Roelcke, M., Han, Y., Schleef, K. H., Zhu, J. G., Liu, G., Cai, Z. C. and Richter, J. (2004) Recent trends and recommendations for nitrogen fertilization in intensive agriculture in eastern China. Pedosphere, v.14, p.449-460.
  210. Roh, Y., Edwards, N. T., Lee, S. Y., Stiles, C. A., Armes, S. and Foss, J. E. (2000) Thermal treated soil for mercury removal: soil and phytotoxicity tests. J. Environ. Qual., v.29(2), p.415-424. https://doi.org/10.2134/jeq2000.00472425002900020007x
  211. Ros, M., Hernandez, M. T. and Garcia, C. (2003) Soil microbial activity after restoration of a semiarid soil by organic amendments. Soil Biol. Biochem., v.35, p.463-469. https://doi.org/10.1016/S0038-0717(02)00298-5
  212. Ros, M., Klammer, S., Knapp, B., Aichberger, K. and Insam, H. (2006) Longterm effects of compost amendment of soil on functional and structural diversity and microbial activity, Soil Use Manage., v.22, p.209-218. https://doi.org/10.1111/j.1475-2743.2006.00027.x
  213. Rosas, J. M., Vicente, F., Santos, A. and Romero, A. (2013) Soil remediation using soil washing followed by Fenton oxidation. Chem. Eng. J., v.220, p.125-132. https://doi.org/10.1016/j.cej.2012.11.137
  214. Roubickova, A., Mudrak, O., Frouz, J., (2009) Effect of earthworm on growth of late succession plant species in postmining sites under laboratory and field conditions. Biol. Fertil. Soils 45, 769-774. https://doi.org/10.1007/s00374-009-0386-7
  215. Saviozzi, A., Biasci, A., Riffaldi, F. and Levi-Minzi, R. (1999) Long term effects of farmyard manure and sewage sludge on some soil biochemical characteristics. Biol. Fertil. Soils, v.30, p.100-106. https://doi.org/10.1007/s003740050594
  216. Sax, M. S., Bassuk, N.. van Es, H. and Rakow, D. (2017) Long-term remediation of compacted urban soils by physical fracturing and incorporation of compost. Urban For, Urban Green., v.24, p.149-156. https://doi.org/10.1016/j.ufug.2017.03.023
  217. Schmid, C. J., Murphy, J. A. and Murphy, S. (2017) Effect of tillage and compost amendment on turfgrass establishment on a compacted sandy loam, J. Soil Water Conserv., v.72, p.55-64. https://doi.org/10.2489/jswc.72.1.55
  218. Scullion, J. and Malik, A. (2000) Earthworm activity affecting organic matter, aggregation and microbial activity in soils restored after opencast mining for coal. Soil Biol. Biochem., v.32, p.119-126. https://doi.org/10.1016/S0038-0717(99)00142-X
  219. Sertsu, S. M. and Sanchez, P. A. (1978) Effects of heating on some changes in soil properties in relation to an Ethiopian land management practice. Soil Sci. Soc. Am. J., 42(6), p.940-944. https://doi.org/10.2136/sssaj1978.03615995004200060023x
  220. Shaaban, M. Peng, Q. Bashir, S. Wu, Y. Younas, A. Xu, X., Rashti, M.R., Abid, M., Zafar-ul-Hye, M. Nunez-Delgado, A., Horwath, W.R., Jiang, Y., Lin, S. and Hu, R. (2019) Restoring effect of soil acidity and Cu on $N_2O$ emissions from an acidic soil. J. Environ. Manage., v.250(15), 109535p. https://doi.org/10.1016/j.jenvman.2019.109535
  221. Shackley, S., Carter, S., Knowles, T., Middelink, E., Haefele, S., Sohi, S., Cross, A. and Haszeldine, S. (2012) Sustainable gasification-biochar systems? a case-study of rice-husk gasification in Cambodia, part I: context, chemical properties, environmental and health and safety issues, Energy Policy, v.42, p.49-58. https://doi.org/10.1016/j.enpol.2011.11.026
  222. Shao, Y. C., Zhang, Y. L., Li, Y., Yan, Y. D. and An, Y. C. (2005) Study of effect on using natural minerals to improve soil in irrigating brackish water. J. Soil Water Conserv., v.19, p.100-103 (In Chinese).
  223. Sharma, B., Sarkar, A., Singh P. and Singh R. P. (2017) Agricultural utilization of biosolids: A review on potential effects on soil and plant grown. Waste Manage., v.64, p.117-132. https://doi.org/10.1016/j.wasman.2017.03.002
  224. She, W. W., Bai, Y. X., Zhang, Y. Q., Qin, S. G., Feng, W., Sun, Y. F., Zheng, J. and Wu, B. (2018) Resource availability drives responses of soil microbial communities to short-term precipitation and nitrogen addition in a desert shrubland. Front. Microbiol., v.9, 186p. https://doi.org/10.3389/fmicb.2018.00186
  225. Shi, Y., Chen, X. and Shen, S. M. (2002) Mechanisms of organic cementing soil aggregate formation and its theoretical models. Chin. J. Appl. Ecol., v.13, p.1495-1498 (In Chinese).
  226. Shi, Z., Tang, Z. and Wang, C. (2019) Effect of phenanthrene on the physicochemical properties of earthworm casts in soil. Ecotox. Environ. Saf., v.168, p.348-355. https://doi.org/10.1016/j.ecoenv.2018.10.032
  227. Shin, D., Jo, Y. T., Park, S. J. and Park, J. H. (2019) Acidic Soil Improvement and Physicochemical Characteristics Using Red-mud and Biochar. J. Korean Soc. Environ. Eng., v.41(9), p.483-493. https://doi.org/10.4491/KSEE.2019.41.9.483
  228. Sierra, M. J., Milla, N, R., Lopez, F.A., Alguacil, F. J. and Canadas, I. (2016) Sustainable remediation of mercury contaminated soils by thermal desorption. Environ. Sci. Pollut. Res. int., v.23(5), p.4898-4907. https://doi.org/10.1007/s11356-015-5688-8
  229. Singh, R. P. and Agrawal, M. (2007) Effects of sewage sludge amendment on heavy metal accumulation and consequent responses of Beta vulgaris plants. Chemosphere, v.67, p.2229-2240. https://doi.org/10.1016/j.chemosphere.2006.12.019
  230. Singh, R. P. and Agrawal, M. (2008) Potential benefits and risks of land application of sewage sludge. Waste Manage., v.28, p.347-358. https://doi.org/10.1016/j.wasman.2006.12.010
  231. Singh, R. P. and Agrawal, M. (2010a) Biochemical and physiological responses of Rice (Oryza sativa L.) grown on different sewage sludge amendments rates. Bull, Environ. Contam. Toxcol., v.23, p.606-612. https://doi.org/10.1007/s00128-010-0007-z
  232. Singh, R. P. and Agrawal, M. (2010b) Effect of different sewage sludge applications on growth and yield of Vigna radiata L. field crop: Metal uptake by plant. Ecol. Eng., v.36, p.969-972. https://doi.org/10.1016/j.ecoleng.2010.03.008
  233. Singh, R. P., Sharma, B., Sarkar, A., Sengupta, C., Singh, P. and Ibrahim, M. H. (2014) Biological responses of agricultural soils to fly ash amendments. Rev. Environ. Contam. Toxicol., v.232, p.45-60. https://doi.org/10.1007/978-3-319-06746-9_2
  234. Singh, S., Singh, J. and Vig, A. P. (2016) Earthworm as ecological engineers to change the physico-chemical properties of soil: Soil vs vermicast. Ecol. Eng., v.90, p.1-5. https://doi.org/10.1016/j.ecoleng.2016.01.072
  235. Sizmur, T., Palumbo-Roe, B. and Hodson, M. E. (2011) Impact of earthworms on trace element solubility in contaminated mine soils amended with green waste compost. Environ. Pollut., v.159, p.1852-1860. https://doi.org/10.1016/j.envpol.2011.03.024
  236. Slater, L. and Lesmes, D. (2002) Electrical-hydraulic relationships observed for unconsolidated sediments. Water Resour. Res., v.38(10), p.31-1-31-13. https://doi.org/10.1029/2001WR001075
  237. Sneath, H. E., Hutchings, T. R. and de Leij, F. A. (2013) Assessment of biochar and iron filing amendments for the remediation of a metal, arsenic and phenanthrene cocontaminated spoil. Environ. Pollut., v.178, p.361-366. https://doi.org/10.1016/j.envpol.2013.03.009
  238. Snyder, B. A. and Hendrix, P. F. (2008) Current and potential roles of soil macroinvertebrates (earthworms, Millipedes, and Isopods) in Ecological Restoration. Restor. Ecol., v.16(4), p.629-636. https://doi.org/10.1111/j.1526-100X.2008.00484.x
  239. Somerville, P. D., May, P. B. and Livesley, S. J. (2018) Effects of deep tillage and municipal green waste compost amendments on soil properties and tree growth in compacted urban soils, J. Environ. Manage., v.227, p.365-374. https://doi.org/10.1016/j.jenvman.2018.09.004
  240. Srivastava, N. K. and Ram, L. C. (2009) Bio-restoration of coal mine spoil with fly ash and biological amendments. In: O. P. Chaubey, Bahadur, Vijay, P. K. Shukla(Eds.), Sustainable Rehabilitation of Degraded Ecosystems, Avishkar Publishers, p.77-91.
  241. Srivastava, N. K., Ram, L. C. and Masto, R. E. (2014) Reclamation of overburden and lowland in coal mining area with fly ash and selective plantation: a sustainable ecological approach. Ecol. Eng., v.71, p.479-489. https://doi.org/10.1016/j.ecoleng.2014.07.062
  242. Stoicescu, J., Haug, M. amd Fredlund, D. (1996) Soil water characteristics and pore size distribution of a sand-bentonite mixture. In: Proc. 49th Canadian Geotechnical Conference. St. John'S Newfoundland, September, p.23-25.
  243. Sun, Y., He, Z., Wu, Q., Zheng, J., Li, Y., Wang, Y,. Chen, T. and Chi, D. (2020) Zeolite amendment enhances rice production, nitrogen accumulation and translocation in wetting and drying irrigation paddy field. Agricultural Water Management, v.235(31) 106126p. https://doi.org/10.1016/j.agwat.2020.106126
  244. Suzuki, S., Noble, A. D., Ruaysoongnern, S. and Chinabut, N. (2007) Improvement in waterholding capacity and structural stability of a sandy soil in Northeast Thailand. Arid Land Res. Manag., v.21(1), p.37-49. https://doi.org/10.1080/15324980601087430
  245. Tahir, S. and Marschner, P. (2016) Clay amendment to sandy soil effect of clay concentration and ped size on nutrient dynamics after residue addition. J. Soils Sediments, v.16, p.2072-2080. https://doi.org/10.1007/s11368-016-1406-5
  246. Talaat, N. B. and Shawky, B. T. (2014) Protective effects of arbuscular mycorrhizal fungi on wheat (Triticum aestivum L.) plants exposed to salinity. Environ. Exp. Bot., v.98, p.20-31. https://doi.org/10.1016/j.envexpbot.2013.10.005
  247. Tejada, M., Garcia, C., Gonzalez, J. L. and Hernandez, M. T. (2006) Use of organic amendment as a strategy for saline soil remediation: influence on the physical, chemical and biological properties of soil. Soil Biol. Biochem., v.38, p.1413-1421. https://doi.org/10.1016/j.soilbio.2005.10.017
  248. Tejada, M., Moreno, J. L., Hernandez, M. T. and Garcia, C. (2007) Application of two beet vinasse forms on soil restoration: effects on soil properties in an arid environment in southern Spain. Agric. Ecosyst. Environ., v.119, p.289-298. https://doi.org/10.1016/j.agee.2006.07.019
  249. Terefe, T., Mariscal-Sancho, I., Peregrina, F. and Espejo, R. (2008) Influence of heating on various properties of six Mediterranean soils. A laboratory study. Geoderma, v.143(3-4), p.273-280. https://doi.org/10.1016/j.geoderma.2007.11.018
  250. Tersic, T. and Gosar, M. (2012) Comparison of elemental contents in earthworm cast and soil from a mercurycontaminated site (Idrija area, Slovenia). Sci. Total Environ., v.430, p.28-33. https://doi.org/10.1016/j.scitotenv.2012.04.062
  251. Thomaz, E. L. and Fachin, P. A. (2014) Effects of heating on soil physical properties by using realistic peak temperature gradients. Geoderma, v.230-231, p.243-249. https://doi.org/10.1016/j.geoderma.2014.04.025
  252. TIFAC (2001) Technology linked business opportunity publications. Non Conventional Sources of Plant Nutrient & Soil Conditioners to Enhance Agricultural Productivity, Code no. TMS1551.
  253. Tirado-Corbala, R., Slater, B. K., Dick, W. A., Bigham, J. and Munoz-Munoz, M. (2019) Gypsum amendment effects on micromorphology and aggregation in no-till Mollisols and Alfisols from western Ohio, USA. Geoderma Regional, v.16, p.e00217. https://doi.org/10.1016/j.geodrs.2019.e00217
  254. Tripathi, R. C., Masto, R. E. and Ram, L. C. (2009) Bulk use of pond ash for cultivation of wheat maize eggplant crops in sequence on a fallow land Resources. Conserv. Rec., v.54, p.134-139. https://doi.org/10.1016/j.resconrec.2009.07.009
  255. Un, H., Han, M., Seo, K. and Seo, M. (2012) Microbial fertilizer for soil improvement using bottom ash carrier, Korean patent, 10-2012-0009080.
  256. United States Environmental Protection Agency (US EPA) (2007) Report on the Environment: Science Report.
  257. USEPA (2013) Literature Review of Contaminants in Livestock and Poultry Manure andImplications for Water Quality.
  258. Usman, K., Khan, S. Ghulam, S., Khan, M. U., Khan, N., Khan, M. A. and Khalil, S. K. (2012) Sewage sludge: an important biological resource for sustainable agriculture and its environmental implications. Am. J. Plant Sci., v.3, p.1708-1721. https://doi.org/10.4236/ajps.2012.312209
  259. Veeresh, H., Tripathy, S., Chaudhuri, D., Ghosh, B. C., Hart, B. and Powell, M. (2003) Changes in physical and chemical properties of three soil types in India as a result of amendment with fly ash and sewage sludge. Environ. Geol., v.43, p.513- 520. https://doi.org/10.1007/s00254-002-0656-2
  260. Villa, R. D., Trovó, A. G. and Nogueira, R. F. P. (2010) Soil remediation using a coupled process: soil washing with surfactant followed by photo-Fenton oxidation. J. Hazard. Mater., v.174(1-3), p.770-775. https://doi.org/10.1016/j.jhazmat.2009.09.118
  261. Vo, T. D. H., Bui, X. T., Lin, C., Nguyen, V. T., Hoang, T. K. D.Nguyen, H. H., Nguyen, P. D., Ngo, H. H. and Guo, W. (2019) A mini-review on shallow-bed constructed wetlands: a promising innovative green roof. Curr. Opin. Environ. Sci. Health, v.12, p.38-47. https://doi.org/10.1016/j.coesh.2019.09.004
  262. Vondrackova, S., Hejcman, M., Tlustos, P. and Szakova, J. (2013) Effect of quick lime and dolomite application on mobility of elements (Cd, Zn, Pb, As, Fe, and Mn) in contaminated Soils. Pol. J. Environ. Stud., v.22, p.577-589.
  263. Walker, R. F. (2003) Comparison of organic and chemical soil amendments used in the reforestation of a harsh Sierra Nevada site. Rest. Ecol., v.11, p.446-474. https://doi.org/10.1046/j.1526-100X.2003.rec0216.x
  264. Wang, G. Y., Zhang, S. R., Xu, X. X., Zhong, Q. M., Zhang, C. E., Jia, Y. X., Li, T., Deng, O. P. and Li, Y. (2016b) Heavy metal removal by GLDA washing: Optimization, redistribution, recycling, and changes in soil fertility. Sci. Total Environ., v.569-570, p.557-568. https://doi.org/10.1016/j.scitotenv.2016.06.155
  265. Wang, G., Zhang, S., Zhong, Q., Xu, X., Li, T., Jia, Y,, Zhang, Y., Peijnenburg, W. J. G. M. and Vijver, M. G. (2018) Effect of soil washing with biodegradable chelators on the toxicity of residual metals and soil biological properties. Sci. Total Environ., v.625, p.1021-1029. https://doi.org/10.1016/j.scitotenv.2018.01.019
  266. Wang, H., Feng, L. and Chen, Y. (2012) Advances in biochar production from wastes and its applications. Chem. Ind. Eng. Prog., v.63, p.3727-3740.
  267. Wang, S. Y., Kuo, Y. C., Hong, A., Chang, Y. M. and Kao, C. M. (2016a) Bioremediation of diesel and lubricant oil-contaminated soils using enhanced landfarming system. Chemospher, v.164, p.558-567. https://doi.org/10.1016/j.chemosphere.2016.08.128
  268. Wardle, D. A. (2002) Communities and Ecosystems: Linking the Aboveground and Belowground Components, 34, Princeton University Press.
  269. Welp, G. (1999) Inhibitory effects of the total and watersoluble concentrations of nine different metals on the dehydrogenase activity of a loess soil. Biol. Ferti. Soils, v.30(1-2), p.132-139. https://doi.org/10.1007/s003740050599
  270. Witters, N., Mendelsohn, R. O., Van Slycken, S., Weyens, N., Schreurs, E., Meers, E., Tack, F., Carleer, R. and Vangreonsveld, J. (2012) Phytoremediation, a sustainable remediation technology? Conclusions from a case study. I: energy production and carbon dioxide abatement. Biomass Bioenerg., v.39, p.454-469. https://doi.org/10.1016/j.biombioe.2011.08.016
  271. Xie, T., Li, Y., Dong, H., Liu, Y., Wang, M. and Wang, G. (2019) Effects and mechanisms on the reduction of lead accumulation in rice grains through lime amendment, Ecotox. Environ. Saf., v.173(30) p.266-272. https://doi.org/10.1016/j.ecoenv.2019.02.010
  272. Xu, J. and Shen, G. (2011) Growing duckweed in swine wastewater for nutrient recovery and biomass production, Bioresour. Technol., v.102(2), p.848-853. https://doi.org/10.1016/j.biortech.2010.09.003
  273. Yang, H., Kim, D., Ahn, B.W. and Lee, J. (2014) Impacts of Green Manure Crop and Charcoal Applications on Ginger Growth and Soil Properties, Korean J Organic Aagi., v.22(3) p.503-519. https://doi.org/10.11625/KJOA.2014.22.3.503
  274. Yang, J. E. (2003) Development of liquid bio-fertilizer production technology for soil amendment, R&D Program for Small and Medium-sized Enterprises.
  275. Yao, Y., Gao, B., Zhang, M., Inyang, M. and Zimmerman, A. R. (2012) Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere, v.89, p.1467-1471. https://doi.org/10.1016/j.chemosphere.2012.06.002
  276. Yi, Q., Zhao, Y., Huang, Y., Wei, G., Hao, Y., Feng, J., Mohamed, U., Pourkashanian, M., Nimmo, W. and Li, W. (2018) Life cycle energy-economic $CO_2$ emissions evaluation of biomass/coal, with and without $CO_2$ capture and storage, in a pulverized fuel combustion power plant in the United Kingdom. Appl. Energy, v.225, p.258-272. https://doi.org/10.1016/j.apenergy.2018.05.013
  277. Yi, Y. M. (2016) Quality and health assessment of contaminated soil after remediation and amendment treatment. Ph. D. thesis, Yukyong National University.
  278. Yi, Y. M. and Sung, K. J. (2015) Influence of washing treatment on the qualities of heavy metalcontaminated soil. Ecol. Eng., v.81, p.89-92. https://doi.org/10.1016/j.ecoleng.2015.04.034
  279. Yi, Y. M., Oh, C. T., Kim, G. J., Lee, C. H. and Sung, K. J. (2012) Changes in the physicochemical properties of soil according to soil remediation methods. J. Soil Groundw. Environ., 17(4), 36-43 https://doi.org/10.7857/JSGE.2012.17.4.036
  280. Yi, Y. M., Park, S. Y., Munster, C., Kim, G. J. and Sung K. J. (2016) Changes in ecological properties of petroleum oil-contaminated soil after lowtemperature thermal desorption treatment. Water Air Soil Pollut., v.227(4), p.1-10 https://doi.org/10.1007/s11270-015-2689-7
  281. Yoo, J. C., Beiyuan, J. Z., Wang, L., Tsang, D. C. W., Baek, K., Bolan, N.S ., Ok, Y. S. and Li, X. D. (2018) A combination of ferric nitrate/EDDS-enhanced washing and sludge-derived biochar stabilization of metal-contaminated soils. Sci. Total Environ., v.616-617, p.572-582. https://doi.org/10.1016/j.scitotenv.2017.10.310
  282. Yu, H., Xiao, H. and Wang, D. (2014) Effects of soil properties and biosurfactant on the behavior of PAHs in soil-water systems. Environ. Syst. Res., v.3(1), p.1-11. https://doi.org/10.1186/2193-2697-3-1
  283. Yuan, P., Shen, B., Duan, D., Adwek, G., Mei, X. and Lu, F. (2017) Study on the formation of direct reduced iron by using biomass as reductants of carbon containing pellets in RHF process. Energy, v.141, p.472-482.. https://doi.org/10.1016/j.energy.2017.09.058
  284. Yuan, P., Wang, J., Pan, Y., Shen, B. and Wu, C. (2019) Review of biochar for the management of contaminated soil: Preparation, application and prospect. Sci. Total Environ., v.659, p.473-490. https://doi.org/10.1016/j.scitotenv.2018.12.400
  285. Yun, S., Jin, H., Kang, S., Choi, S., Lim, Y. and Yu, C. (2010) A Comparison on the effect of soil improvement methods for the remediation of heavy metal contaminated farm land soil. J. Korean Geotech. Soc., v.26(7), p.59-70.
  286. Yun, S. J. (2010) World Trend and Prospect of Environmental Restoration Industry. Gloval Green Growrh Policy, v.24, p.1-16.
  287. Zayani, K., Bousnina, H., Mhiri, A., Hartmann, R. and Cherif, H. (1996) Evaporation in layered soils under different rates of clay amendment. Agric. Water Manage., v.30, p.143-154. https://doi.org/10.1016/0378-3774(95)01217-6
  288. Zdruli, P., Jones, R. J. A. and Montanarella, L. (2004) Organic Matter in the Soils of Southern Europe. In: European Soil Bureau Technical Report. EUR 21083 EN, Office for Official Publications of the European Communities. Luxembourg, 16p.
  289. Zeb, A., Li, S., Wu, J., Lian, J., Liu, W. and Sun, Y. (2020) Insights into the mechanisms underlying the remediation potential of earthworms in contaminated soil: A critical review of research progress and prospects. Sci. Total Environ., v.740(20), 140145p. https://doi.org/10.1016/j.scitotenv.2020.140145
  290. Zhai, X., Li, Z., Huang, B., Luo, N., Huang, M., Zhang, Q. and Zeng, G. (2018) Remediation of multiple heavy metal-contaminated soil through the combination of soil washing and in situ immobilization. Sci. Total Environ., 635, 92-99. https://doi.org/10.1016/j.scitotenv.2018.04.119
  291. Zhang, H. M., Xu, M. G. and Zhang, F. (2009) Long-term effects of manure application on grain yield under different cropping systems and ecological conditions in China. J. Agricult. Sci., v.147, p.31-42. https://doi.org/10.1017/s0021859608008265
  292. Zhang, K., Chen, L., Li, Y., Brookes, P. C., Xu, J. and Luo, Y. (2017) The effects of combinations of biochar, lime, and organic fertilizer on nitrification and nitrifiers. Biol. Fertil. Soils, v.53(1), p.77-87. https://doi.org/10.1007/s00374-016-1154-0
  293. Zhang, Q., Zhou, W., Liang, G., Wang, X. Sun, J. and He, P. (2015) Effects of different organic manures on the biochemical and microbial characteristics of albic paddy soil in a short-term experiment. PLoS One, v.10(4), e0124096p. https://doi.org/10.1371/journal.pone.0124096
  294. Zhen, Z., Liu, H., Wang, N., Guo, L., Meng, J., Ding, N., Wu, G. and Jiang, G. (2014) Effects of manure compost application on soil microbial community diversity and soil microenvironments in a temperate cropland in China. PLoS One, v.9(10), e108555p.. https://doi.org/10.1371/journal.pone.0108555
  295. Zhu, H., Yang, J., Yao, R., Wang, X., Xie, W., Zhu, W., Liu, X., Cao, Y. and Tao, J. (2020) Interactive effects of soil amendments (biochar and gypsum) and salinity on ammonia volatilization in coastal saline soil. Catena, v.190, p.104527. https://doi.org/10.1016/j.catena.2020.104527
  296. Zhu, J. C., Zhang, Z. Q., Fan, Z. M. and Li, H. R. (2014) Biogas potential, cropland load and total amount control of animal manure in China. J. Agrometeorol., v.33, p.435-445.
  297. Zihms, S. G., Switzer, C., Irvine, J. and Karstunen, M. (2013) Effects of high temperature processes on physical properties of silica sand, Eng. Geol., 164, 139-145. https://doi.org/10.1016/j.enggeo.2013.06.004
  298. Zoca, S. M. and Penn, C. (2017) An important tool with no instruction manual: a review of gypsum use in agriculture. Adv. Agron., v.144, p.1-44. https://doi.org/10.1016/bs.agron.2017.03.001
  299. Zupanc, V., Kastelec, D., Lestan, D. and Grcman, H. (2014) Soil physical characteristics after EDTA washing and amendment with inorganic and organic additives. Environ. Pollu., v.186, p.56-62. https://doi.org/10.1016/j.envpol.2013.11.027