DOI QR코드

DOI QR Code

Lithological and Structural Lineament Mapping from Landsat 8 OLI Images in Ras Kammouna Arid Area (Eastern Anti-Atlas, Morocco)

  • Es-Sabbar, Brahim (Moulay Ismail University, Faculty of Sciences and Techniques, Department of Geosciences) ;
  • Essalhi, Mourad (Moulay Ismail University, Faculty of Sciences and Techniques, Department of Geosciences) ;
  • Essalhi, Abdelhafid (Moulay Ismail University, Faculty of Sciences and Techniques, Department of Geosciences) ;
  • Mhamdi, Hicham Si (Moulay Ismail University, Faculty of Sciences and Techniques, Department of Geosciences)
  • Received : 2020.02.08
  • Accepted : 2020.07.24
  • Published : 2020.08.28

Abstract

The study area is located in the southern part of the M'aider Paleozoic basin in the Moroccan Eastern Anti-Atlas. It is an arid region, characterized by minimal vegetation cover, which can provide an ideal environment to apply remote sensing. In this study, remote sensing and field investigations were integrated for lithological and structural lineaments mapping. The Landsat 8 OLI data were processed in order to understand the role of lithology and geological structures in the distribution of mineral deposits in the study area. To achieve this purpose, the Color Composite (CC), the Principal Component Analysis (PCA) and Band Rationing transformation (BR) tests were performed. The results of remote sensing techniques coupled with field investigations have shown that the zones of high lineaments densities are highly correlated with the occurrences of barite mineralization. These findings depict a spatial relationship between structural lineaments and the mineralization distribution zones. Therefore, the barite and Iron oxides mineralization veins, which occur mainly in the Ras Kammouna district, seem to have a structural control. The methodological approach used in this study examining lithological mapping and lineament extractions can be used to explore mineral deposits in arid regions to a high degree of efficiency.

Keywords

References

  1. Adiri, Z., El Harti, A., Jellouli, A., et al. (2016) Lithological mapping using Landsat 8 OLI and Terra ASTER multispectral data in the Bas Drâa inlier, Moroccan Anti Atlas. J Appl Remote Sens 10:016005. https://doi.org/10.1117/1.JRS.10.016005
  2. Ali, A. and Pour, A. (2014) Lithological mapping and hydrothermal alteration using Landsat 8 data: a case study in ariab mining district, red sea hills, Sudan. Int J Basic Appl Sci 3: https://doi.org/10.14419/ijbas.v3i3.2821
  3. Alonso-Contes, C. A. (2011) Lineament mapping for groundwater exploration using remotely sensed imagery in a karst terrain: Rio Tanama and Rio de Arecibo basins in the northern karst of Puerto Rico. 79.
  4. Amer, R., Kusky, T., and El Mezayen, A. (2012) Remote sensing detection of gold related alteration zones in Um Rus area, Central Eastern Desert of Egypt. Adv Space Res v.49, p.121-134. https://doi.org/10.1016/j.asr.2011.09.024
  5. Amer, R., Kusky, T., and Ghulam, A. (2010) Lithological mapping in the Central Eastern Desert of Egypt using ASTER data. J Afr Earth Sci v.56, p.75-82. https://doi.org/10.1016/j.jafrearsci.2009.06.004
  6. Baidder, L., Raddi, Y., Tahiri, M., and Michard, A. (2008) Devonian extension of the Pan-African crust north of the West African craton, and its bearing on the Variscan foreland deformation: evidence from eastern Anti-Atlas (Morocco). Geol Soc Lond Spec Publ v.297, p.453-465. https://doi.org/10.1144/SP297.21
  7. Bouramtane, T., Kacimi, I., Saidi, A., et al. (2017) Automatic Detection and Evaluation of Geological linear Features from Remote Sensing Data Using the Hough Transform Algorithm in Eastern Anti-Atlas (Morocco). In: Proceedings of the 2nd International Conference on Computing and Wireless Communication Systems - ICCWCS'17. ACM Press, Larache, Morocco, pp.1-6.
  8. Bruning, J. N. (2008) Digital processing and data compilation approach for using remotely sensed imagery to identify geological lineaments in hard-rock terrains: an application for groundwater explorations in Nicaragua. 144.
  9. Burkhard, M., Caritg, S., Helg, U., et al. (2006) Tectonics of the Anti-Atlas of Morocco. Comptes Rendus Geosci v.338, p.11-24. https://doi.org/10.1016/j.crte.2005.11.012
  10. Choubert, G. (1947) L'accident majeur de l'Anti-Atlas. Comptes Rendus Academie Sci Paris v.224, p.1172-1173.
  11. Destombes, J. and Hollard, H. (1986) Carte geologique du Maroc au 1/200 000, feuille Tafilalt-Taouz. Notes Mem Serv Geologique Maroc 244.
  12. Du Dresnay, R., Hindermeyer, J., Emberger, A., et al. (1988) Carte Geologique du Maroc au 1 : 200 000. Feuille Todgha - M'aider, and Notice explicative. Notes et Memoires du Service Geologique du Maroc, 243, & 243 bis
  13. Farahbakhsh, E., Chandra, R., Olierook, H. K. H., et al. (2018) Computer vision-based framework for extracting geological lineaments from optical remote sensing data. ArXiv181002320 Cs
  14. Gasmi, A., Gomez, C., Zouari, H., et al. (2016) PCA and SVM as geo-computational methods for geological mapping in the southern of Tunisia, using ASTER remote sensing data set. Arab J Geosci 9:. https://doi.org/10.1007/s12517-016-2791-1
  15. Harris, J. R., Rogge, D., Hitchcock, R., et al. (2005) Mapping lithology in Canada's Arctic: application of hyperspectral data using the minimum noise fraction transformation and matched filtering. Can J Earth Sci v.42, p.2173-2193. https://doi.org/10.1139/e05-064
  16. Hejja, Y., Baidder, L., Ibouh, H., et al. (2020) Fractures distribution and basement-cover interaction in a polytectonic domain: A case study from the Saghro Massif (Eastern Anti-Atlas, Morocco). J Afr Earth Sci v.162, p.103694. https://doi.org/10.1016/j.jafrearsci.2019.103694
  17. Hollard, H. (1974) Recherches sur la stratigraphie des formations du Devonien moyen, de l'Emsien superieur au Frasnien, dans le Sud du Tafilalt et dans le Ma'der (Anti-Atlas oriental). Notes Mem Serv Geologique Maroc v.264, p.7-68.
  18. Hollard, H. and Willefert, S. (1985) Lower palaeozoic rocks of Morocco. Low Palaeoz North-West West-Cent Afr John Wiley N Y 91-336.
  19. Irons, J. R., Dwyer, J. L., and Barsi, J. A. (2012) The next Landsat satellite: The Landsat Data Continuity Mission. Remote Sens Environ v.122, p.11-21. https://doi.org/10.1016/j.rse.2011.08.026
  20. Laben, Brower, B. V. (2000) and B. V. Brower, "Process for Enhancing the Spatial Resolution of Multispectral Imagery Using Pan-Sharpening," Google Patents, 2000. - Recherche Google. Accessed 30 Dec 2018.
  21. Madani, A. A. (2001) Selection of the optimum Landsat Thematic Mapper bands for automatic lineaments extraction, Wadi Natash area, South Eastern Desert, Egypt. 6.
  22. Mahan, A. and Arfania, R. (2018) Exploring Porphyry Copper Deposits in the Central Iran Using Remote Sensing Techniques. Open J Geol v.08, p.606-622. https://doi.org/10.4236/ojg.2018.86035
  23. Malusa, M. G., Polino, R., Feroni, A. C., et al. (2007) Post- Variscan tectonics in eastern Anti-Atlas (Morocco). Terra Nova v.19, p.481-489. https://doi.org/10.1111/j.1365-3121.2007.00775.x
  24. Mars, J. C. and Rowan, L. C. (2006) Regional mapping of phyllic- and argillic-altered rocks in the Zagros magmatic arc, Iran, using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and logical operator algorithms. 27.
  25. Mathew, T. G. and Ariffin, K. S. (2018a) Remote Sensing Technique for Lineament Extraction in Association with Mineralization Pattern in Central Belt Peninsular Malaysia. J Phys Conf Ser v.1082, p.012092. https://doi.org/10.1088/1742-6596/1082/1/012092
  26. Mathew, T. G. and Ariffin, K. S. (2018b) Remote Sensing Technique for Lineament Extraction in Association with Mineralization Pattern in Central Belt Peninsular Malaysia. J Phys Conf Ser v.1082, p.012092. https://doi.org/10.1088/1742-6596/1082/1/012092
  27. Maurer, T. (2013) How to pan-sharpen images using the Gram-Schmidt Pan-Sharpen method- a recipe. ISPRS - Int Arch Photogramm Remote Sens Spat Inf Sci XL-1/W1:239-244. https://doi.org/10.5194/isprsarchives-XL-1-W1-239-2013
  28. Michard, A., Hoepffner, C., Soulaimani, A., and Baidder, L. (2008) The Variscan Belt. In: Michard A, Saddiqi O, Chalouan A, Lamotte DF de (eds) Continental Evolution: The Geology of Morocco. Springer Berlin Heidelberg, Berlin, Heidelberg, pp.65-132.
  29. Mounji, D. (1999) Les plates-formes carbonatees devoniennes du Tafilalt-Maider, Anti-Atlas oriental, Maroc: Sedimentologie, Diagenese et Potentiel petrolifere. 324.
  30. Pour, A. B. and Hashim, M. (2012) The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits. Ore Geol Rev v.44, p.1-9. https://doi.org/10.1016/j.oregeorev.2011.09.009
  31. Pour, A. B., Hashim, M., Makoundi, C., and Zaw, K. (2016) Structural Mapping of the Bentong-Raub Suture Zone Using PALSAR Remote Sensing Data, Peninsular Malaysia: Implications for Sediment-hosted/Orogenic Gold Mineral Systems Exploration: Structural mapping of the Bentong-Raub Suture Zone, Malaysia. Resour Geol v.66, p.368-385. https://doi.org/10.1111/rge.12105
  32. Raddi, Y., Baidder, L., Tahiri, M., and Michard, A. (2007) Variscan deformation at the northern border of the West African Craton, eastern Anti-Atlas, Morocco: compression of a mosaic of tilted blocks. Bull Soc Geol Fr v.178, p.343-352. https://doi.org/10.2113/gssgfbull.178.5.343
  33. Richards, J. A. (2013) Remote sensing digital image analysis: an introduction, Fifth edition. Springer, Berlin.
  34. Robert-Charrue, C. (2006) Geologie structurale de l'Anti-Atlas oriental, Maroc. PhD Thesis, Universite de Neuchatel
  35. Roy, D. P., Wulder, M. A., Loveland, T. R., et al. (2014) Landsat-8: Science and product vision for terrestrial global change research. Remote Sens Environ v.145, 154-172. https://doi.org/10.1016/j.rse.2014.02.001
  36. Rowan, L. C., Trautwein, C. M., and Purdy, T. L. (1991) Map Showing The Association of Linear Features with Metallic Mines And Prospects in the Butte lox $2^{\circ}$ Quadrangle, Montana. 12.
  37. Sabins, F. F. (1999) Remote sensing for mineral exploration. Ore Geol Rev v.14, p.157-183. https://doi.org/10.1016/S0169-1368(99)00007-4
  38. Safari, M., Maghsoudi, A., and Pour, A. B. (2018) Application of Landsat-8 and ASTER satellite remote sensing data for porphyry copper exploration: a case study from Shahr-e-Babak, Kerman, south of Iran. Geocarto Int 33:1186-1201. https://doi.org/10.1080/10106049.2017.1334834
  39. Sedrettea, S. and Rebaïb, N. (2016) Automatic extraction of lineaments from Landsat Etm+ images and their structural interpretation: Case Study in Nefza region (North West of Tunisia). J Res Environ Earth Sci v.4, p.139-145.
  40. Si Mhamdi, H., Raji, M., Maimouni, S., and Oukassou, M. (2017) Fractures network mapping using remote sensing in the Paleozoic massif of Tichka (Western High Atlas, Morocco). Arab J Geosci v.10: https://doi.org/10.1007/s12517-017-2912-5
  41. Vall, M. M. and Badra, L. (2016) Object-Oriented Image Classification Method of Automatic Lineaments Extraction: Contribution to Geological Fractures of Anti-Atlas, Morocco. 19.
  42. Villas, E., Vizcaïno, D., Alvaro, J. J., et al. (2006) Biostratigraphic control of the latest-Ordovician glaciogenic unconformity in Alnif (Eastern Anti-Atlas, Morocco), based on brachiopods. Geobios v.39, p.727-737. https://doi.org/10.1016/j.geobios.2005.05.003
  43. Wold, S., Esbensen, K., and Geladi, P. (1987) Principal Component Analysis. 16.
  44. Yousefi, T., Aliyari, F., Abedini, A., and Calagari, A. A. (2018) Integrating geologic and Landsat-8 and ASTER remote sensing data for gold exploration: a case study from Zarshuran Carlin-type gold deposit, NW Iran. Arab J Geosci 11:. https://doi.org/10.1007/s12517-018-3822-x
  45. Zhang, Z., He, G., and Wang, X. (2010) A practical DOS model-based atmospheric correction algorithm. Int J Remote Sens v.31, p.2837-2852. https://doi.org/10.1080/01431160903124682