DOI QR코드

DOI QR Code

A study on the estimation of the renewable energy certificates(REC) weight considering the life cycle assessment(LCA) of greenhouse gas emission

전과정(LCA) 온실가스 평가를 고려한 신재생에너지 공급인증서 가중치 산정 방안 연구

  • Beak, Hun (Department of Consulting, Kumoh National Institute of Technology) ;
  • Kim, Tae Sung (School of Industrial Engineering, Kumho National Institute of Technology)
  • 백훈 (금오공과대학교 컨설팅학과) ;
  • 김태성 (금오공과대학교 산업공학부)
  • Received : 2020.05.19
  • Accepted : 2020.08.20
  • Published : 2020.08.28

Abstract

The government continuously improves the RPS system to expand the supply of renewable energy, but there has been criticism that more environmental aspects should be considered to reduce GHG emission. REC weights are differentiated according to renewable energy sources. Greenhouse gas emission is one of the decisive factors, and its value is set by experts' opinion. This study assigns LCA to get accurate value of GHG emission. The LCA calculates emitted greenhouse gases from entire process of fuel production, transportation, power plant construction, operation, and decommission. This study suggests a method to change the greenhouse gas reduction effect from the existing qualitative method to the quantitative method and evaluates them. As a result, the evaluation score is changed, but the tier interval is so large that it does not affect the REC weight. Therefore, this study suggests the way that directly reflect the greenhouse gas reduction effect in the REC weight.

정부는 신재생에너지 보급을 확대하는 RPS제도를 지속해서 개선하지만, 온실가스 저감효과 증대를 위해 환경적인 측면을 더 고려해야 한다는 비판이 있다. 공급인증서 가중치는 신재생 에너지원별로 차등화되어 있다. 공급인증서 가중치 결정 요소의 하나인 온실가스 저감효과 항목 값은 전문가의 의견을 반영하여 결정된다. 이번 연구는 온실가스 배출량을 정확하게 반영하기 위해 전과정 평가를 고려하였다. 전과정 평가는 연료 생산, 수송부터 발전소 건설, 운영, 폐지까지의 전과정에서 발생 되는 온실가스를 정확하게 산출하는 것이다. 이번 연구는 온실가스 저감효과를 기존 정성적 방법에서 정량적 방법으로 변경하는 방안을 제안하고 평가한다. 그 결과, 평가 점수는 바뀌는데, 점수를 등급화하는 구간이 커서 REC 가중치에는 영향을 주지 않는다. 따라서 온실가스 저감효과를 공급인증서 가중치에 직접 반영하는 방안을 제시하였다.

Keywords

References

  1. H. J. Kim & G. L. Cho. (2010). Economic impacts of renewable portfolio standard on domestic industry. Environmental and Resource Economics Review, 19(4), 805-828. UCI : G704-000752.2010.19.4.008
  2. M. J. Kim. (2018). A study of efficient new and renewable energy policy through new and renewable energy policy analysis. Seoul : BAI Korea.
  3. S. B. Ahn, K. H. Kim, S. B. Kim, J. H. Lee & M. S. Han. (2018). Analysis of macroeconomic effects of structural changes in international energy markets. Sejong : KIEP.
  4. S. J. Kim. (2019). Yonhap News Agency. 'Renewable energy only in patterns?' Biomass ranked first in subsidy for 5 years. http://www.yna.co.kr
  5. C. G. Ji & W. S. Chung. (2006). A Comparative Study on the LCA Cases for Power Generation Technologies. Journal of Korea Safety Management & Science, 8(4), 249-265. UCI : G704-001460.2006.8.4.017
  6. T. W. Kim, S. H. Kim, W. S. Chung, J. J. Ha, K. R. Min & S. H. Ko. (2004). Life Cycle Assessment for National Electricity Generation Systems. Korean Society for Energy Symposium (pp. 353-358). Seoul : Korean Energy Society.
  7. S. B. Oh, C. Y. Lee & K. H. Kim. (2017). The effect of increasing supply obligations on employment in RPS system. Sejong : KLI.
  8. KERI. (2007). A study on the design and application of RPS(Renewable Portfolio Standard) system in Korea. Changwon : KERI.
  9. C. H. Lee. (2016). A study on renewable energy certificate multiplier for remote island in Korea. Changwon : KERI.
  10. C. H. Lee. (2014). A study on the REC weight applied in 2014. Changwon : KERI.
  11. KPMG. (2018). A study on the status of RPS technology economics and system improvement by energy source. Seoul : KPMG.
  12. K. W. Kim & B. H. Kim. (2014). A Study on the Estimation of REC Multiplier for ESS Introduction. Journal of Energy Engineering, 23(4), 106-111. UCI : G704-001268.2014.23.4.032 https://doi.org/10.5855/ENERGY.2014.23.4.106
  13. R. Dones, T. Heck & S. Hirschberg. (2003). Greenhouse gas emissions from energy systems: comparison and overview.. Villigen : PSI.
  14. WEC. (2004). Comparison of energy systems using life cycle assessment. London : WEC.
  15. D. Weisser. (2006). A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies. Energy, 32(9), 1543-1559. DOI : 10.1016/j.energy.2007.01.008
  16. F. Barnaby & J. Kemp. (2007). Secure energy?. London : Oxford Research Group.
  17. Varun, I. K. Bhat & R. Prakash. (2009). Renewable and sustainable energy review. Renewable Energy Review, 2009(13), 1067-1073 .
  18. CRIEPI. (2016). Comprehensive evaluation of life cycle $CO_{2}$ emissions of power generation technology in Japan. Tokyo : CRIEPI.
  19. M. Silva & H. L. Raadal. (2019). Life cycle GHG emissions of renewable and non-reneweable electricity generation technologies. Krakeroy : Ostfoldforskning.