DOI QR코드

DOI QR Code

Progress and Challenges in the Development of COVID-19 Vaccines and Current Understanding of SARS-CoV-2-Specific Immune Responses

  • Kim, Kyun-Do (Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology) ;
  • Hwang, Insu (Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology) ;
  • Ku, Keun Bon (Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology) ;
  • Lee, Sumin (Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology) ;
  • Kim, Seong-Jun (Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology) ;
  • Kim, Chonsaeng (Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology)
  • 투고 : 2020.06.04
  • 심사 : 2020.06.15
  • 발행 : 2020.08.28

초록

The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is spreading globally, and the WHO has declared this outbreak a pandemic. Vaccines are an effective way to prevent the rapid spread of COVID-19. Furthermore, the immune response against SARS-CoV-2 infection needs to be understood for the development of an efficient and safe vaccine. Here, we review the current understanding of vaccine targets and the status of vaccine development for COVID-19. We also describe host immune responses to highly pathogenic human coronaviruses in terms of innate and adaptive immunities.

키워드

참고문헌

  1. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579: 270-273. https://doi.org/10.1038/s41586-020-2012-7
  2. Zumla A, Chan JF, Azhar EI, Hui DS, Yuen KY. 2016. Coronaviruses - drug discovery and therapeutic options. Nat. Rev. Drug Discov. 15: 327-347. https://doi.org/10.1038/nrd.2015.37
  3. Cheng VC, Lau SK, Woo PC, Yuen KY. 2007. Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin. Microbiol. Rev. 20: 660-694. https://doi.org/10.1128/CMR.00023-07
  4. Chan JF, Lau SK, To KK, Cheng VC, Woo PC, Yuen KY. 2015. Middle East respiratory syndrome coronavirus: another zoonotic betacoronavirus causing SARS-like disease. Clin. Microbiol. Rev. 28: 465-522. https://doi.org/10.1128/CMR.00102-14
  5. Lee JY, Bae S, Myoung J. 2019. Middle East respiratory syndrome Coronavirus-encoded accessory proteins impair MDA5-and TBK1-mediated activation of NF-${\kappa}B$. J. Microbiol. Biotechnol. 29: 1316-1323. https://doi.org/10.4014/jmb.1908.08004
  6. Gralinski LE, Baric RS. 2015. Molecular pathology of emerging coronavirus infections. J. Pathol. 235: 185-195. https://doi.org/10.1002/path.4454
  7. Velavan TP, Meyer CG. 2020. The COVID-19 epidemic. Trop. Med. Int. Health 25: 278-280. https://doi.org/10.1111/tmi.13383
  8. Lake MA. 2020. What we know so far: COVID-19 current clinical knowledge and research. Clin. Med (Lond). 20: 124-127. https://doi.org/10.7861/clinmed.2019-coron
  9. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. 2020. Clinical characteristics of Coronavirus disease 2019 in China. N. Engl. J. Med. 382: 1708-1720. https://doi.org/10.1056/NEJMoa2002032
  10. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. 2020. Early transmission dynamics in Wuhan, China, of novel Coronavirus- Infected pneumonia. N. Engl. J. Med. 382: 1199-1207. https://doi.org/10.1056/NEJMoa2001316
  11. Prompetchara E, Ketloy C, Palaga T. 2020. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac. J. Allergy Immunol. 38: 1-9.
  12. Cucinotta D, Vanelli M. 2020. WHO declares COVID-19 a pandemic. Acta Biomed. 91: 157-160.
  13. Lu S. 2020. Timely development of vaccines against SARS-CoV-2. Emerg. Microbes Infect. 9: 542-544. https://doi.org/10.1080/22221751.2020.1737580
  14. Lee J, Bae S, Myoung J. 2019. Generation of full-length infectious cDNA clones of middle east respiratory syndrome coronavirus. J. Microbiol. Biotechnol. 29: 999-1007. https://doi.org/10.4014/jmb.0905.05061
  15. Jiang S, He Y, Liu S. 2005. SARS vaccine development. Emerg. Infect. Dis. 11: 1016-1020. https://doi.org/10.3201/1107.050219
  16. Yong CY, Ong HK, Yeap SK, Ho KL, Tan WS. 2019. Recent advances in the vaccine development against Middle East respiratory syndrome-coronavirus. Front. Microbiol. 10: 1781. https://doi.org/10.3389/fmicb.2019.01781
  17. Lin JT, Zhang JS, Su N, Xu JG, Wang N, Chen JT, et al. 2007. Safety and immunogenicity from a phase I trial of inactivated severe acute respiratory syndrome coronavirus vaccine. Antivir. Ther. 12: 1107-1113.
  18. Martin JE, Louder MK, Holman LA, Gordon IJ, Enama ME, Larkin BD, et al. 2008. A SARS DNA vaccine induces neutralizing antibody and cellular immune responses in healthy adults in a Phase I clinical trial. Vaccine 26: 6338-6343. https://doi.org/10.1016/j.vaccine.2008.09.026
  19. Modjarrad K, Roberts CC, Mills KT, Castellano AR, Paolino K, Muthumani K, et al. 2019. Safety and immunogenicity of an anti- Middle East respiratory syndrome coronavirus DNA vaccine: a phase 1, open-label, single-arm, dose-escalation trial. Lancet Infect. Dis. 19: 1013-1022. https://doi.org/10.1016/S1473-3099(19)30266-X
  20. Ahmed SF, Quadeer AA, McKay MR. 2020. Preliminary identification of potential vaccine targets for the COVID-19 Coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses 12: 254. https://doi.org/10.3390/v12030254
  21. Dhama K, Sharun K, Tiwari R, Dadar M, Malik YS, Singh KP, et al. 2020. COVID-19, an emerging coronavirus infection: advances and prospects in designing and developing vaccines, immunotherapeutics, and therapeutics. Hum. Vaccin. Immunother. 16: 1232- 1238. https://doi.org/10.1080/21645515.2020.1735227
  22. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. 2020. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395: 565-574. https://doi.org/10.1016/S0140-6736(20)30251-8
  23. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, et al. 2020. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367: 1260-1263. https://doi.org/10.1126/science.abb2507
  24. Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. 2020. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 367: 1444-1448. https://doi.org/10.1126/science.abb2762
  25. Zhou Y, Jiang S, Du L. 2018. Prospects for a MERS-CoV spike vaccine. Expert Rev. Vaccines 17: 677-686. https://doi.org/10.1080/14760584.2018.1506702
  26. Koyama S, Ishii KJ, Coban C, Akira S. 2008. Innate immune response to viral infection. Cytokine 43: 336-341. https://doi.org/10.1016/j.cyto.2008.07.009
  27. Thompson MR, Kaminski JJ, Kurt-Jones EA, Fitzgerald KA. 2011. Pattern recognition receptors and the innate immune response to viral infection. Viruses 3: 920-940. https://doi.org/10.3390/v3060920
  28. Teijaro JR. 2016. Type I interferons in viral control and immune regulation. Curr. Opin. Virol. 16: 31-40. https://doi.org/10.1016/j.coviro.2016.01.001
  29. Jensen S, Thomsen AR. 2012. Sensing of RNA viruses: a review of innate immune receptors involved in recognizing RNA virus invasion. J. Virol. 86: 2900-2910. https://doi.org/10.1128/JVI.05738-11
  30. He L, Ding Y, Zhang Q, Che X, He Y, Shen H, et al. 2006. Expression of elevated levels of pro-inflammatory cytokines in SARS-CoVinfected $ACE2^+$ cells in SARS patients: relation to the acute lung injury and pathogenesis of SARS. J. Pathol. 210: 288-297. https://doi.org/10.1002/path.2067
  31. Perlman S, Dandekar AA. 2005. Immunopathogenesis of coronavirus infections: implications for SARS. Nat. Rev. Immunol. 5: 917- https://doi.org/10.1038/nri1732
  32. Zumla A, Hui DS, Perlman S. 2015. Middle East respiratory syndrome. Lancet 386: 995-1007. https://doi.org/10.1016/S0140-6736(15)60454-8
  33. Snijder EJ, van der Meer Y, Zevenhoven-Dobbe J, Onderwater JJ, van der Meulen J, Koerten HK, et al. 2006. Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex. J. Virol. 80: 5927- 5940. https://doi.org/10.1128/JVI.02501-05
  34. Blanchard E, Roingeard P. 2015. Virus-induced double-membrane vesicles. Cell. Microbiol. 17: 45-50. https://doi.org/10.1111/cmi.12372
  35. Haller O, Kochs G. 2002. Interferon-induced mx proteins: dynamin-like GTPases with antiviral activity. Traffic 3: 710-717. https://doi.org/10.1034/j.1600-0854.2002.31003.x
  36. Sen GC. 2001. Viruses and interferons. Annu. Rev. Microbiol. 55: 255-281. https://doi.org/10.1146/annurev.micro.55.1.255
  37. Kurche JS, Haluszczak C, McWilliams JA, Sanchez PJ, Kedl RM. 2012. Type I IFN-dependent T cell activation is mediated by IFNdependent dendritic cell OX40 ligand expression and is independent of T cell IFNR expression. J. Immunol. 188: 585-593. https://doi.org/10.4049/jimmunol.1102550
  38. Lee JY, Kim SJ, Myoung J. 2019. Middle East respiratory syndrome Coronavirus-Encoded ORF8b inhibits RIG-I-Like receptors in a differential mechanism. J. Microbiol. Biotechnol. 29: 2014-2021. https://doi.org/10.4014/jmb.1911.11024
  39. Lee JY, Bae S, Myoung J. 2019. Middle East respiratory syndrome coronavirus-encoded ORF8b strongly antagonizes IFN-beta promoter activation: its implication for vaccine design. J. Microbiol. 57: 803-811. https://doi.org/10.1007/s12275-019-9272-7
  40. Lokugamage KG, Schindewolf C, Menachery VD. 2020. SARS-CoV-2 sensitive to type I interferon pretreatment. bioRxiv 2020.2003.2007.982264.
  41. Team CC-R. 2020. Severe outcomes among patients with Coronavirus Disease 2019 (COVID-19) - United States, February 12- March 16, 2020. MMWR Morb Mortal Wkly Rep. 69: 343-346. https://doi.org/10.15585/mmwr.mm6912e2
  42. Shaw AC, Goldstein DR, Montgomery RR. 2013. Age-dependent dysregulation of innate immunity. Nat. Rev. Immunol. 13: 875-887. https://doi.org/10.1038/nri3547
  43. Li T, Qiu Z, Zhang L, Han Y, He W, Liu Z, et al. 2004. Significant changes of peripheral T lymphocyte subsets in patients with severe acute respiratory syndrome. J. Infect. Dis. 189: 648-651. https://doi.org/10.1086/381535
  44. Xie J, Fan HW, Li TS, Qiu ZF, Han Y. 2006. [Dynamic changes of T lymphocyte subsets in the long-term follow-up of severe acute respiratory syndrome patients]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 28: 253-255.
  45. Chen J, Qi T, Liu L, Ling Y, Qian Z, Li T, et al. 2020. Clinical progression of patients with COVID-19 in Shanghai, China. J. Infect. 80: e1-e6.
  46. Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. 2020. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin. Infect. Dis. 71: 762-768. https://doi.org/10.1093/cid/ciaa248
  47. Zheng HY, Zhang M, Yang CX, Zhang N, Wang XC, Yang XP, et al. 2020. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell. Mol. Immunol. 17: 541-543. https://doi.org/10.1038/s41423-020-0401-3
  48. Channappanavar R, Fehr AR, Vijay R, Mack M, Zhao J, Meyerholz DK, et al. 2016. Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host Microbe. 19: 181-193. https://doi.org/10.1016/j.chom.2016.01.007
  49. Snell LM, Osokine I, Yamada DH, De la Fuente JR, Elsaesser HJ, Brooks DG. 2016. Overcoming CD4 Th1 cell fate restrictions to sustain antiviral CD8 T cells and control persistent virus infection. Cell. Rep. 16: 3286-3296. https://doi.org/10.1016/j.celrep.2016.08.065
  50. Wong CK, Lam CW, Wu AK, Ip WK, Lee NL, Chan IH, et al. 2004. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin. Exp. Immunol. 136: 95-103. https://doi.org/10.1111/j.1365-2249.2004.02415.x
  51. Mahallawi WH, Khabour OF, Zhang Q, Makhdoum HM, Suliman BA. 2018. MERS-CoV infection in humans is associated with a pro-inflammatory Th1 and Th17 cytokine profile. Cytokine 104: 8-13. https://doi.org/10.1016/j.cyto.2018.01.025
  52. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. 2020. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395: 497-506. https://doi.org/10.1016/S0140-6736(20)30183-5
  53. McElroy AK, Akondy RS, Davis CW, Ellebedy AH, Mehta AK, Kraft CS, et al. 2015. Human Ebola virus infection results in substantial immune activation. Proc. Natl. Acad. Sci. USA 112: 4719-4724. https://doi.org/10.1073/pnas.1502619112
  54. Thevarajan I, Nguyen THO, Koutsakos M, Druce J, Caly L, van de Sandt CE, et al. 2020. Breadth of concomitant immune responses prior to patient recovery: a case report of non-severe COVID-19. Nat. Med. 26: 453-455. https://doi.org/10.1038/s41591-020-0819-2
  55. Tisoncik JR, Korth MJ, Simmons CP, Farrar J, Martin TR, Katze MG. 2012. Into the eye of the cytokine storm. Microbiol. Mol. Biol. Rev. 76: 16-32. https://doi.org/10.1128/MMBR.05015-11
  56. Newton AH, Cardani A, Braciale TJ. 2016. The host immune response in respiratory virus infection: balancing virus clearance and immunopathology. Semin. Immunopathol. 38: 471-482. https://doi.org/10.1007/s00281-016-0558-0
  57. Ababneh M, Alrwashdeh M, Khalifeh M. 2019. Recombinant adenoviral vaccine encoding the spike 1 subunit of the Middle East Respiratory Syndrome Coronavirus elicits strong humoral and cellular immune responses in mice. Vet. World 12: 1554-1562. https://doi.org/10.14202/vetworld.2019.1554-1562
  58. Li G, Fan Y, Lai Y, Han T, Li Z, Zhou P, et al. 2020. Coronavirus infections and immune responses. J. Med. Virol. 92: 424-432. https://doi.org/10.1002/jmv.25685
  59. Li G, Chen X, Xu A. 2003. Profile of specific antibodies to the SARS-associated coronavirus. N. Engl. J. Med. 349: 508-509. https://doi.org/10.1056/NEJM200307313490520
  60. Cheng M, Chan CW, Cheung RC, Bikkavilli RK, Zhao Q, Au SW, et al. 2005. Cross-reactivity of antibody against SARS-coronavirus nucleocapsid protein with IL-11. Biochem. Biophys. Res. Commun. 338: 1654-1660. https://doi.org/10.1016/j.bbrc.2005.10.088
  61. Zhou G, Zhao Q. 2020. Perspectives on therapeutic neutralizing antibodies against the novel Coronavirus SARS-CoV-2. Int. J. Biol. Sci. 16: 1718-1723. https://doi.org/10.7150/ijbs.45123
  62. Mubarak A, Alturaiki W, Hemida MG. 2019. Middle East Respiratory Syndrome Coronavirus (MERS-CoV): infection, immunological response, and vaccine development. J. Immunol. Res. 2019: 6491738. https://doi.org/10.1155/2019/6491738
  63. Coleman CM, Liu YV, Mu H, Taylor JK, Massare M, Flyer DC, et al. 2014. Purified coronavirus spike protein nanoparticles induce coronavirus neutralizing antibodies in mice. Vaccine 32: 3169-3174. https://doi.org/10.1016/j.vaccine.2014.04.016
  64. Payne DC, Iblan I, Rha B, Alqasrawi S, Haddadin A, Al Nsour M, et al. 2016. Persistence of antibodies against Middle East Respiratory Syndrome Coronavirus. Emerg. Infect. Dis. 22: 1824-1826. https://doi.org/10.3201/eid2210.160706
  65. Liu W, Fontanet A, Zhang PH, Zhan L, Xin ZT, Baril L, et al. 2006. Two-year prospective study of the humoral immune response of patients with severe acute respiratory syndrome. J. Infect. Dis. 193: 792-795. https://doi.org/10.1086/500469
  66. Tang F, Quan Y, Xin ZT, Wrammert J, Ma MJ, Lv H, et al. 2011. Lack of peripheral memory B cell responses in recovered patients with severe acute respiratory syndrome: a six-year follow-up study. J. Immunol. 186: 7264-7268. https://doi.org/10.4049/jimmunol.0903490
  67. Zhang B, Zhou X, Zhu C, Feng F, Qiu Y, Feng J, et al. 2020. Immune phenotyping based on neutrophil-to-lymphocyte ratio and IgG predicts disease severity and outcome for patients with COVID-19. Front. Mol. Biosci. 7: 157. https://doi.org/10.3389/fmolb.2020.00157
  68. Haveri A, Smura T, Kuivanen S, Osterlund P, Hepojoki J, Ikonen N, et al. 2020. Serological and molecular findings during SARSCoV- 2 infection: the first case study in Finland, January to February 2020. Euro Surveill. 25: 2000266.
  69. Liu L, Wei Q, Lin Q, Fang J, Wang H, Kwok H, et al. 2019. Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI Insight. 4: e123158. https://doi.org/10.1172/jci.insight.123158

피인용 문헌

  1. Synthesis and immunogenicity assessment of a gold nanoparticle conjugate for the delivery of a peptide from SARS-CoV-2 vol.34, 2021, https://doi.org/10.1016/j.nano.2021.102372