DOI QR코드

DOI QR Code

A Study on Path Analysis Between Elementary School Students' Computational Thinking Components

초등학생의 컴퓨팅 사고력 구성요소 간의 경로 분석 연구

  • Lee, Jaeho (Dept. of Computer Education, Gyeongin Nat'l University of Education) ;
  • Jang, Junhyung (Oma Elementary School)
  • Received : 2020.03.03
  • Accepted : 2020.04.07
  • Published : 2020.04.30

Abstract

There is a hot debate about what the core competencies of future generations, who have to live an uncertain future, should cultivate. The future society is expected to become a Software-oriented Society driven by software. Under these circumstances, interest in software education is exploding around the world, and interest in cultivating computational thinking through software education is also increasing. Also, discussions about what computational thinking is and what competence factors are made up are in progress. However, the research on the relationship between the competence factors of computational thinking is relatively insufficient. In order to solve this problem, this study proceeded as follows. First, five competence factors of computational thinking were selected. Second, we defined a path model to analyze the relationships among the competence factors of computational thinking. Third, we chose a test tool to test computational thinking. Fourth, the computational thinking tests were conducted for 801 students in grades 3 through 6 of elementary school. Fifth, implications were derived by analyzing various viewpoints based on the results of the computational thinking test.

불확실한 미래를 살아가야 하는 미래 세대들이 배양해야 할 핵심역량은 무엇인가에 대한 논의가 뜨겁다. 미래 사회는 소프트웨어에 의해 작동되는 소프트웨어 중심사회가 될 것으로 예측하고 있다. 이러한 상황에서 전 세계적으로 소프트웨어 교육에 대한 관심이 폭발적으로 증가하고 있는 상황이며, 소프트웨어 교육을 통한 컴퓨팅 사고력 계발에 대한 관심도 증가하고 있는 상황이다. 이와 더불어 컴퓨팅 사고력은 무엇이며, 어떤 역량들로 구성되는 가에 대한 논의도 활발하게 진행되고 있으나, 컴퓨팅 사고력을 구성하는 역량 요소들 간의 관계에 대한 연구는 상대적으로 미흡한 상황이다. 이런 문제점을 해결하고자 본 연구는 다음과 같은 단계로 진행하였다. 첫째, 컴퓨팅 사고력의 5가지 역량 요소를 선정하였다. 둘째, 컴퓨팅 사고력의 역량 요소 간 관계성을 분석할 수 있는 경로 도형을 설정하였다. 셋째, 컴퓨팅 사고력을 검사할 수 있는 검사도구를 선정하였다. 넷째, 초등학교 3학년부터 6학년까지의 학생 801명을 대상으로 컴퓨팅 사고력 검사를 실시하였다. 다섯째, 컴퓨팅 사고력 검사 결과를 바탕으로 다양한 관점의 분석을 실시하여 시사점을 도출하였다.

Keywords

References

  1. Wing. J. M(2006). Computational thinking. Communications of the ACM. 17(3).33-35. https://doi.org/10.1145/1118178.1118215
  2. Jung Sook Sung, Hyeoncheol Kim(2015). Analysis on the International Comparison of Computer Education in Schools. The Journal of Korean Association of Computer Education, 18(1), 45-54. https://doi.org/10.32431/KACE.2015.18.1.005
  3. Korea Ministry of Education(2015). Commentary on the Revised Curriculum for 2015. http://www.edunet.net/nedu/ncicsvc/listSub2015Form.do?menu_id=623.
  4. Aehwa Lee(2019). Domestic Research Trend Analysis of Computing Thinking. The Journal of the Korea Contents Association, 19(8), 214-223. https://doi.org/10.5392/JKCA.2019.19.08.214
  5. Grover, S., & Pea, R(2018). Computational Thinking: A competency whose time has come. Computer science education: Perspectives on teaching and learning in school, 19.
  6. CSTA Standards Task Force(2016). [Interim] CSTA K-12 Computer Science Standards. New York: CSTA.
  7. Barr, V., & Stephenson, C(2011). Bringing computational thinking to K-12: What is involved and what is the role of the computer science education community? ACM Inroads, 2(1), 48-54. https://doi.org/10.1145/1929887.1929905
  8. Furber S(2012) Shut down or restart? The way forward for computing in UK schools. Technical report, The Royal Society, London.
  9. Computer Science Teachers Association(2011). K-12 computer science standards. http://csta.acm.org/Curriculum/sub/K12Standards.html.
  10. ISTE, C(2011). Computational Thinking in K-12 Education leadership toolkit. Computer Science Teacher Association: http://csta.acm.org/Curriculum/sub/CurrFiles/471.11CTLeadershipt Toolkit-SP-vF.pdf adresindenalindi.
  11. Mannila, L., Dagiene, V., Demo, B., Grgurina, N., Mirolo, C., Rolandsson, L., & Settle, A(2014, June). Computational thinking in K-9 education. In Proceedings of the working group reports of the 2014 on innovation & technology in computer science education conference (pp. 1-29).
  12. Yang, D., Swanson, S. R., Chittoori, B., & Baek, Y(2018). Work in Progress: Integrating Computational Thinking in STEM Education Through a Project-Based Learning Approach.
  13. Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U(2016). Defining computational thinking for mathematics and science classrooms. Journal of Science Education and Technology, 25(1), 127-147. https://doi.org/10.1007/s10956-015-9581-5
  14. Csizmadia, A., Curzon, P., Dorling, M., Humphreys, S., Ng, T., Selby, C., & Woollard, J(2015). Computational thinking-A guide for teachers.
  15. Jaeho Lee, Junhyung Jang(2019). An Analysis of Research Trends in Computational Thinking using Text Mining Technique. The Journal of the Korea Contents Association, 23(6), 543-550.
  16. Seong-Sik Kim, Young-Jik Kim, Ara Jo, Min-Woo Lee(2019). Development of a Tool for Computational Thinking Assessment in Problem-Solving Programming Education:Paper Type Inspection and Self-Report Questionnaire. The Korean Association Of Computer Education, 22(3), 89-99. https://doi.org/10.32431/kace.2019.22.3.008
  17. Heo Jun(2013). Heo Joon's Easily Amos Equation Model. Seoul: Hannarae Publishing Co.