DOI QR코드

DOI QR Code

Advances in the understanding of molybdenum effect on iodine and caesium reactivity in condensed phase in the primary circuit in nuclear severe accident conditions

  • Received : 2019.06.12
  • Accepted : 2020.01.28
  • Published : 2020.08.25

Abstract

In the case of a severe accident in a Light Water Reactor, the issue of late release of fission products, from the primary circuit surfaces is of particular concern due to the direct impact on the source term. CsI is the main iodine compound present in the primary circuit and can be deposited as particles or condensed species. Its chemistry can be affected by the presence of molybdenum, and can lead to the formation of gaseous iodine. The present work studied chemical reactions on the surfaces involving gaseous iodine release. CsI and MoO3 were used to highlight the effects of carrier gas composition and oxygen partial pressure on the reactions. The results revealed a noticeable effect of the presence of molybdenum on the formation of gaseous iodine, mainly identified as molecular iodine. In addition, the oxygen partial pressure prevailing in the studied conditions was an influential parameter in the reaction.

Keywords

References

  1. T.-M.-D. Do, S. Sujatanond, T. Ogawa, Behavior of cesium molybdate, Cs2MoO4, in severe accident conditions. (1) partitioning of Cs and Mo among gaseous species, J. Nucl. Sci. Technol. 55 (2018) 348-355, https://doi.org/10.1080/00223131.2017.1397560.
  2. J.-P. Van Dorsselaere, A. Auvinen, D. Beraha, P. Chatelard, L.E. Herranz, C. Journeau, W. Klein-Hessling, I. Kljenak, A. Miassoedov, S. Paci, R. Zeyen, Recent severe accident Research synthesis of the major outcomes from the SARNET network, Nucl. Eng. Des. 291 (2015) 19-34, https://doi.org/10.1016/j.anucene.2016.02.014.
  3. G. Ducros, Y. Pontillon, P.P. Malgouyres, Synthesis of the VERCORS experimental programme: separate-effect experiments on fission product release, in support of the phebus-FP programme, Ann. Nucl. Energy 61 (2013) 75-87, https://doi.org/10.1016/j.anucene.2013.02.033.
  4. A.-C. Gregoire, T. Haste, Material release from the bundle in Phebus FP, Ann. Nucl. Energy 61 (2013) 63-74, https://doi.org/10.1016/j.anucene.2013.02.037.
  5. A.-C. Gregoire, J. Kalilainen, F. Cousin, H. Mutelle, L. Cantrel, A. Auvinen, T. Haste, S. Sobanska, Studies on the role of molybdenum on iodine transport in the RCS in nuclear severe accident conditions, Ann. Nucl. Energy 78 (2015) 117-129, https://doi.org/10.1016/j.anucene.2014.11.026.
  6. M. Gouello, H. Mutelle, F. Cousin, S. Sobanska, E. Blanquet, Analysis of the iodine gas phase produced by interaction of CsI and MoO3 vapours in flowing steam, Nucl. Eng. Des. 263 (2013) 462-472, https://doi.org/10.1016/j.nucengdes.2013.06.016.
  7. J. McFarlane, J.C. Wren, R.J. Lemire, Chemical speciation of iodine source term to containment, Nucl. Technol. 138 (2002) 162-178. http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=20826755. https://doi.org/10.13182/NT138-162
  8. N. Girault, C. Fiche, A. Bujan, J. Dienstbier, Towards a better understanding of iodine chemistry in RCS of nuclear reactors, Nucl. Eng. Des. 239 (2009) 1162-1170, https://doi.org/10.1016/j.nucengdes.2009.02.008.
  9. K. Mueller, S. Dickinson, C. de Pascale, N. Girault, L. Herranz, F. De Rosa, G. Henneges, J. Langhans, C. Housiadas, V. Wichers, A. Dehbi, S. Paci, F. Martin-Fuertes, I. Turcu, I. Ivanov, B. Toth, G. Horvath, Validation of severe accident codes on the phebus fission product tests in the framework of the PHEBEN-2 project, Nucl. Technol. 163 (2008) 209-227, https://doi.org/10.13182/NT08-A3982.
  10. J. Kalilainen, T. Karkela, R. Zilliacus, U. Tapper, A. Auvinen, J. Jokiniemi, Chemical reactions of fission product deposits and iodine transport in primary circuit conditions, Nucl. Eng. Des. 267 (2014) 140-147, https://doi.org/10.1016/j.nucengdes.2013.11.078.
  11. J. Sugimoto, M. Kajimoto, K. Hashimoto, K. Soda, Short Overview on the Definitions and Significance of the Late Phase Fission Product Aerosol/Vapour Source, 1994. Tokai-Mura.
  12. G. Katata, M. Chino, T. Kobayashi, H. Terada, M. Ota, H. Nagai, M. Kajino, R. Draxler, M.C. Hort, A. Malo, T. Torii, Y. Sanada, Detailed source term estimation of the atmospheric release for the Fukushima Daiichi nuclear power station accident by coupling simulations of an atmospheric dispersion model with an improved deposition scheme and oceanic dispersion model, Atmos. Chem. Phys. 15 (2015) 1029-1070, https://doi.org/10.5194/acp-15-1029-2015.
  13. E.H.P. Cordfunke, R.J.M. Konings, Chemical interactions in water-cooled nuclear fuel: a thermochemical approach, J. Nucl. Mater. 152 (1988) 301-309, https://doi.org/10.1016/0022-3115(88)90341-8.
  14. D. Cubicciotti, B.R. Sehgal, Vapor transport of fission products in postulated severe light water reactor accidents, Nucl. Technol. 65 (1984) 266-291, https://doi.org/10.13182/NT84-A33411.
  15. M. Gouello, J. Hokkinen, T. Karkela, A. Auvinen, A scoping study of chemical behaviour of caesium iodide in presence of boron in condensed phase ($650^{\circ}C$ and $400^{\circ}C$) under primary circuit conditions, Nucl. Technol. 203 (2018) 66-84, https://doi.org/10.1080/00295450.2018.1429111.
  16. W. Klein-Hessling, M. Sonnenkalb, D. Jacquemain, B. Clement, E. Raimond, H. Dimmelmeier, G. Azarian, G. Ducros, C. Journeau, L.E. Herranz Puebla, A. Schumm, A. Miassoedov, I. Kljenak, G. Pascal, S. Bechta, S. Guntay, M.K. Koch, I. Ivanov, A. Auvinen, I. Lindholm, Conclusions on severe accident Research priorities, Ann. Nucl. Energy (2014), https://doi.org/10.1016/j.anucene.2014.07.015.
  17. J. Kalilainen, Chemical Reactions on Primary Circuit Surfaces and Their Effects on Fission Product Transport in a Severe Nuclear Accident, Aalto University, 2010.
  18. G. Ducros, Y. Pontillon, P.-P. Malgouyres, P. Taylor, Y. Dutheillet, Ruthenium release at high temperature from irradiated PWR fuels in various oxidising conditions; main findings from the VERCORS program, in: Nucl. Energy New Eur. 2005, Nuclear Society of Slovenia, Bled (Slovenia), Slovenia, 2005, pp. 34.1-34.14.
  19. M. Gouello, J. Kalilainen, T. Karkela, A. Auvinen, Contribution to the understanding of iodine transport under primary circuit conditions: CsI/Cd and CsI/Ag interactions in condensed phase, Nucl. Mater. Energy. 17 (2018) 259-268, https://doi.org/10.1016/J.NME.2018.11.011.
  20. T. Haste, F. Payot, P.D.W. Bottomley, Transport and deposition in the Phebus FP circuit, Ann. Nucl. Energy 61 (2013) 102-121. http://www.sciencedirect.com/science/article/pii/S0306454912004355. https://doi.org/10.1016/j.anucene.2012.10.032
  21. C.W. Bale, E. Belisle, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, I.-H. Jung, Y.-B. Kang, J. Melançon, A.D. Pelton, C. Robelin, S. Petersen, FactSage thermochemical software and databases d recent developments, Calphad 33 (2009) 295-311, https://doi.org/10.1016/j.calphad.2008.09.009.
  22. H.A. Benesi, J.H. Hildebrand, A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons, J. Am. Chem. Soc. 71 (1949) 2703-2707. http://pubs.acs.org/doi/pdf/10.1021/ja01176a030.
  23. D.J. Gardiner, C.J. Littleton, K.M. Thomas, K.N. Strafford, Distribution and characterization of high temperature air corrosion products on ironchromium alloys by Raman microscopy, Oxid. Metals 27 (1987) 57-72. https://doi.org/10.1007/BF00656729
  24. L. Seguin, M. Figlarz, R. Cavagnat, J.-C. Lassegues, Infrared and Raman spectra of MoO3 molybdenum trioxides and MoO3 ${\cdot}$ xH2O molybdenum trioxide hydrates, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 51 (1995) 1323-1344, https://doi.org/10.1016/0584-8539(94)00247-9.
  25. G.C. Allen, J.W. Tyler, Chemical state and distribution of iodine deposits on 17% Cr/12% Ni steel oxidised in CO2/CH3I gas mixtures, J. Nucl. Mater. 170 (1990) 276-285, https://doi.org/10.1016/0022-3115(90)90299-3.
  26. W.M. Haynes, CRC Handbook of Chemistry and Physics : a Ready-Reference Book of Chemical and Physical Data, 92nd ed., 2011.
  27. H.A. Hoekstra, The Cs2MoO4 - MoO3 system, Inorg. Nucl. Chem. Lett. 9 (1973) 1291-1301. https://doi.org/10.1016/0020-1650(73)80013-3
  28. S. Sunder, The relationship between molybdenum oxidation state and iodine volatility in nuclear fuel, Nucl. Technol. 144 (2003) 259-273. http://cat.inist.fr/?aModele=afficheN&cpsidt=15205641. https://doi.org/10.13182/NT03-A3443
  29. F.G. Di Lemma, J.Y. Colle, O. Benes, R.J.M. Konings, A separate effect study of the influence of metallic fission products on CsI radioactive release from nuclear fuel, J. Nucl. Mater. 465 (2015) 499-508, https://doi.org/10.1016/j.jnucmat.2015.05.037.
  30. M. Lenz, R. Gruehn, Developments in measuring and calculating chemical vapor transport phenomena demonstrated on Cr, Mo, W, and their compounds, Chem. Rev. 97 (1997) 2967-2994. https://doi.org/10.1021/cr940313a
  31. L.A. Klinkova, E.D. Skrebkova, Heterogeneous equilibrium in system MoO2-I2, Inorg. Mater. 13 (1977) 380-383.
  32. M. Gouello, J. Hokkinen, T. Karkela, A. Auvinen, A complementary study to the chemical behaviour of caesium iodide in presence of boron in condensed phase ($650^{\circ}C$ and $400^{\circ}C$) under primary circuit Conditions : differential thermal analysis and thermogravimetric studies, Nucl. Technol. 203 (2018) 85-91, https://doi.org/10.1080/00295450.2018.1430463.

Cited by

  1. Revaporization Behavior of Cesium and Iodine Compounds from Their Deposits in the Steam-Boron Atmosphere vol.6, pp.48, 2021, https://doi.org/10.1021/acsomega.1c04441