• Title/Summary/Keyword: Primary circuit

Search Result 358, Processing Time 0.035 seconds

Long term activity measurement of the primary circuit water on the LVR-15 research reactor

  • Ladislav Viererbl;Vit Klupak;Hana Assmann Vratislavska
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1250-1253
    • /
    • 2024
  • Activity measurement of the primary circuit water of fission reactors is one method that can provide early detection of a damaged fuel assembly in the reactor core. This is an important aspect in the safe operation of the reactor and for radiation protection of staff. Radionuclides in the primary circuit water are produced by the activation of stable nuclides and the fission of fissile nuclides, mainly the isotope 235U. In the LVR-15 research reactor, measurement of the activity of the primary circuit water has been regularly undertaken since 1996. A water sample is taken from the primary circuit every week and the activities are measured four days later using gamma spectrometry. The results of these long-term measurements from 1996 to 2022 are presented. The activity time dependences of the individual radionuclides are discussed in relation to fuel assembly damage and for events connected to contamination of the water by objects inserted into the primary circuit during experiments carried out near the reactor core.

A Study on the Three-Level Converter using Primary Auxiliary Circuit (1차측 보조회로를 이용한 Three-Level 컨버터에 관한 연구)

  • Bae, Jin-Yong;Kim, Yong;Cho, Kyu-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.972-981
    • /
    • 2008
  • A New ZVS(Zero Voltage Switching) and ZVZCS(Zero Voltage and Zero Current Switching) Three-Level Converter is proposed. The proposed converter presented in this paper used a phase shift control with a flying capacitor in the primary side to achieve ZVS for the all switch. A primary auxiliary circuit, which consists of one coupled inductor, is added in the primary to provide ZVZCS conditions to primary switches. Many advantages including simple circuit topology high efficiency, and low cost make this converter attractive for high power applications. The principle of operation, feature and design considerations are illustrated and verified through the experiment with a 2kW(27V, 74A) 40 kHz IGBT based experimental circuit.

A study on the ZVS/ZVZCS Three-Level converter using the minimum auxiliary circuit (최소 보조회로를 이용한 ZVS/ ZVZCS Three-Level 컨버터에 관한 연구)

  • Cho, Kyu-Man;Kim, Yong;Bae, Jin-Yong;Lee, Eun-Young;Choi, Geun-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.173-176
    • /
    • 2006
  • This paper discusses the ZVS/ ZVZCS Three-Level converter using the minimum auxiliary circuit. A primary auxiliary circuit, which consists of one coupled inductor is added in the primary circuit to provide ZVZCS conditions to primary switches. ZVS is for outer switches and ZCS or ZVS is for inner switches. Many advantages including simple circuit topology high efficiency, and low cost make this converter attractive for high power applications. The principle of operation, feature and design considerations arc illustrated and verified through the experiment with a 2kHz 400kHz IGBT based experimental circuit.

  • PDF

Advances in the understanding of molybdenum effect on iodine and caesium reactivity in condensed phase in the primary circuit in nuclear severe accident conditions

  • Gouello, Melany;Hokkinen, Jouni;Karkela, Teemu
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1638-1649
    • /
    • 2020
  • In the case of a severe accident in a Light Water Reactor, the issue of late release of fission products, from the primary circuit surfaces is of particular concern due to the direct impact on the source term. CsI is the main iodine compound present in the primary circuit and can be deposited as particles or condensed species. Its chemistry can be affected by the presence of molybdenum, and can lead to the formation of gaseous iodine. The present work studied chemical reactions on the surfaces involving gaseous iodine release. CsI and MoO3 were used to highlight the effects of carrier gas composition and oxygen partial pressure on the reactions. The results revealed a noticeable effect of the presence of molybdenum on the formation of gaseous iodine, mainly identified as molecular iodine. In addition, the oxygen partial pressure prevailing in the studied conditions was an influential parameter in the reaction.

Dynamic Resistance Monitoring in Primary Circuit during Resistatnce Spot Welding (저항 점용접의 1차 회로 동저항 모니처링에 관한 연구)

  • 조용준;황정복;신현일;배경민;권태용;이세헌
    • Proceedings of the KWS Conference
    • /
    • 1998.10a
    • /
    • pp.129-132
    • /
    • 1998
  • The dynamic resistance monitoring in primary circuit or T/C is one of the important issues in that in-process and real time quality assurance of resistance spot weld is needed to increase the product reliability. It is well known that tile dynamic resistance curve gives us very useful information about nugget growth and weldability. In the present paper, a new dynamic resistance detecting method is presented as a practical manner of weld quality assurance using instantaneous current and voltage measured by primary circuit. Primary dynamic resistance patterns are basically similar to those of the secondary, but there is evident advantage such as no extra devices are needed to obtain the quality assurance index and eventually feedback control will be possible caused by T/C based monitoring system.

  • PDF

The Research for a Structure of Current Limiter using a Phasic Similitude of Magnetic Circuit (자기회로의 위상학적 상사성을 이용한 전류제한기 구조에 관한 연구)

  • Ji, Geun-Yang;Min, Kyung-Il;Lee, Su-Won;Jang, Bong-Hwan;Moon, Young-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2128-2135
    • /
    • 2009
  • In this paper, current limiter using a magnetic switching which is based on magnetic flux change in the case of fault is proposed. This current limiter consists of iron-core and three parts of coils. One is the primary coil connected to the power system. Another is the secondary coil wound to the opposite direction of the primary coil's winding. The other is the secondary of the secondary coil which is a movable copper plate winding and located below the secondary coil. In the normal state, the magnetic flux produced in the primary and secondary coils flows to the opposite directions each other and becomes to be canceled out. Therefore the voltages induced between the coils are zero. In the case of a fault, at the moment of a fault occurrence recognition, the switch connected to a secondary coil is opened and the secondary of the secondary coil is pulled out to the outside of the iron-core. Then, magnetic flux becomes to flow through the iron-core. Accordingly, the voltage is induced between the both ends of the primary coil and makes the current reduced. Therefore it is possible to cut off the circuit breaker easily with the proposed current limiter. This paper analyzes the current limiting effects and the detailed results are given.

A Fault Simulation Method Based on Primary Output (근본 출력에 근거한 고장 모의실험)

  • 이상설;박규호
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.6
    • /
    • pp.63-70
    • /
    • 1994
  • In this paper, we propose a fault simulation method based on primary output in combinational circuit. In the deterministic test pattern generation, each test pattern is genterated incrementally. The test pattern is applied to the primary inputs of circuit under test to simulate faults. We detect the faults with respect to each primary output. The fault detection with resptect to each primary output is reflected by the corresponding bit in the detection words, and efficient fault detection for the reconvergent fan-out stem is achieved with dynamic fault propagation. As an experimental result of the fault simulation with our method for the several bench mark circuits, we illustrated the good performance showing that the number of gates to be activated is much reduced as compared with other method which is not based on primary output.

  • PDF

Characterization of Primary Dynamic Resistance in Resistance Spot Welding (저항 점 용접의 1차 동저항 특성에 관한 연구)

  • 조용준;이세헌;신현일;배경민
    • Journal of Welding and Joining
    • /
    • v.17 no.2
    • /
    • pp.97-103
    • /
    • 1999
  • The dynamic resistance monitoring in primary circuit is one of the important issues. Because in-process and real time quality assurance of resistance spot weld is needed to increase the product reliability. In this study, new dynamic resistance detecting method is proposed as a practical manner of weld quality assurance using instantaneous current and voltage measured at the primary circuit. and also, various patterns of primary dynamic resistance curve are characterized with the macro photograph and the weldability lobe curve. It is found that the primary dynamic resistance patterns are basically similar to those of the secondary, but there is evident advantage such as no extra devices are needed to obtain the quality information and eventually real time feedback control will be possible.

  • PDF

Phase-Shifted Full-Bridge Converter for Welding Power Supply Capable of Using 220 V, 440 V 3-Phase Grid Voltages (220V, 440V 3상 계통전압 혼용이 가능한 용접 전원장치용 위상천이 풀브리지 컨버터)

  • Yun, Duk-Hyeon;Lee, Woo-Seok;Lee, Jun-Young;Lee, Il-Oun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.5
    • /
    • pp.372-375
    • /
    • 2021
  • A three-leg inverter-type isolated DC-DC Converter that can use 220 and 440 V grid input voltages is introduced. The secondary circuit structure of the proposed topology is center-tap, which is the same as the conventional phase-shifted full-bridge converter. However, the primary circuit structure is composed of a three-leg inverter structure and a transformer, in which two primary windings are connected in series. The proposed circuit structure has a wider input voltage range than the conventional phase-shifted full-bridge converter, and the circulating-current on the primary-side is reduced. In addition, the voltage stress at the secondary rectifier is greatly improved, and high efficiency can be achieved at a high input voltage by removing the snubber circuit added to the conventional converter. Prototype converters with input DC of 311 V, output of 622 V, and 50 V and 6 kW class specifications were designed and manufactured to verify the validity of the proposed topology; the experimental results are presented.

A Topological Transformation and Hierarchical Compensation Capacitor Control in Segmented On-road Charging System for Electrical Vehicles

  • Liu, Han;Tan, Linlin;Huang, Xueliang;Guo, Jinpeng;Yan, Changxin;Wang, Wei
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1621-1628
    • /
    • 2016
  • Experiencing power declines when the secondary coil is at the middle position between two primary coils is a serious problem in segmented on-road charging systems with a single energized segmented primary coil. In this paper, the topological transformation of a primary circuit and a hierarchical compensation capacitor control are proposed. Firstly, the corresponding compensation capacitors and receiving powers of different primary structures are deduced under the condition of a fixed frequency. Then the receiving power characteristics as a function of the position variations in systems with a single energized segmented primary coil and those with double segmented primary coils are analyzed comparatively. A topological transformation of the primary circuit and hierarchical compensation capacitor control are further introduced to solve the foregoing problem. Finally, an experimental prototype with the proposed topological transformation and hierarchical compensation capacitor control is carried out. Measured results show that the receiving power is a lot more stable in the movement of the secondary coil. It is a remarkable fact that the receiving power rises from 10.8W to 19.2W at the middle position between the two primary coils. The experimental are in agreement with the theoretical analysis.