DOI QR코드

DOI QR Code

Immunostimulatory effects of the Pueraria lobata flower extract via MAPK signaling in RAW264.7 cells

  • Kim, Ki-tae (Dept. of Internal Medicine, College of Korean Medicine, Semyung University)
  • Received : 2020.11.09
  • Accepted : 2020.11.17
  • Published : 2020.12.01

Abstract

Objectives: In this study, we investigated the effects of Pueraria lobata Ohwi flower extracts (PLFE) on macrophages and their underlying mechanism(s) of action. PLFE increased the production of NO and cytokines (IL-6 and TNF-𝛼) in a dose-dependent manner, indicating its immunostimulatory property. Furthermore, PLFE upregulated iNOS, COX-2, and mitogen-activated protein kinase (MAPK) signaling in RAW264.7 cells. Additionally, PLFE enhanced the phosphorylation of I𝜅B𝛼 and subsequent I𝜅B𝛼 degradation, thereby enabling the nuclear translocation of NF-𝜅B. Taken together, these findings demonstrate that the immunostimulatory effects of PLFE are mediated by the nuclear translocation of the p65 subunit of NF-𝜅B and subsequent secretion of cytokines (IL-6 and TNF-𝛼), upregulation of iNOS and COX-2, and stimulation of MAPK signaling (JNK, ERK, and p38). Thus, PLFE may be a potential immunostimulatory therapeutic.

Keywords

Acknowledgement

This paper was supported by the Semyung University Research Grant 2020.

References

  1. Haque, M.A.; Jantan, I.; Bukhari, S.N.A. Tinospora species: An overview of their modulating effects on the immune system. Journal of Ethnopharmacology 2017, 207, 67-85. https://doi.org/10.1016/j.jep.2017.06.013
  2. Sunhee Park, Changsook Yang, Heesun Kim, Yunju Choi, Miran Jang, Yongmoo Kim, Minsik Kim, Yoonjung Kang, Taeseok Kang, Hwajeong Lee, Gyungneo Ban, Ilwon Seo, Youngju Lee, Jinhee Lee, Jaemyung Oh. Health Functional Food Functional Evaluation Guide-'Can help improve immune function' section. Ministry of Food and Drug Safety 2014, 15-16.
  3. Reyes, A.W.B.; Hop, H.T.; Arayan, L.T.; Huy, T.X.N.; Park, S.J.; Kim, K.D. The host immune enhancing agent Korean red ginseng oil successfully attenuates Brucella abortus infection in a murine model. Journal of Ethnopharmacology 2017, 198, 5-14. https://doi.org/10.1016/j.jep.2016.12.026
  4. Hong, Y.J.; Kim, N.; Lee, K.; Sonn, C.H.; Lee, J.E.; Kim, S.T.; Baeg, I.H.; Lee, K.M. Korean red ginseng (Panax ginseng) ameliorates type 1 diabetes and restores immune cell compartments. Journal of Ethnopharmacology 2012, 144, 225-233. https://doi.org/10.1016/j.jep.2012.08.009
  5. Hong, S.H.; Ku, J.M.; Kim, H.I.; Ahn, C.W.; Park, S.H.; Seo, H.S.; Shin, Y.C.; Ko, S.G. The immune-enhancing activity of Cervus nippon mantchuricus extract (NGE) in RAW264.7 macrophage cells and immunosuppressed mice. Food Research International 2017, 99, 623-629. https://doi.org/10.1016/j.foodres.2017.06.053
  6. Wu, F.; Zhou, C.; Zhou, D.; Ou, S.; Liu, Z.; Huang, H. Immune-enhancing activities of chondroitin sulfate in murine macrophage RAW 264.7 cells. Carbohydrate Polymers 2018, 198, 611-619. https://doi.org/10.1016/j.carbpol.2018.06.071
  7. Tang, C.; Sun, J.; Liu, J.; Jin, C.; Wu, X.; Zhang, X.; Chen, H.; Gou, Y.; Kan, J.; Qian, C.; Zhang, N. Immune-enhancing effects of polysaccharides from purple sweet potato. International Journal of Biological Macromolecules 2019, 123, 923-930. https://doi.org/10.1016/j.ijbiomac.2018.11.187
  8. Han, S.B.; Yoon, Y.D.; Ahn, H.J.; Lee, H.S.; Lee, C.W.; Yoon, W.K.; Park, S.K; Kim, H.M. Toll-like receptor-mediated activation of B cells and macrophages by polysaccharide isolated from cell culture of Acanthopanax senticosus. International Immunopharmacology 2003, 3, 1301-1312. https://doi.org/10.1016/S1567-5769(03)00118-8
  9. Hong, S.H.; Ku, J.M.; Kim, H.I.; Ahn, C.W.; Park, S.H.; Seo, H.S.; Shin, Y.C.; Ko, S.G. The immune-enhancing activity of Cervus nippon mantchuricus extract (NGE) in RAW264.7 macrophage cells and immunosuppressed mice. Food Research International 2017, 99, 623-629. https://doi.org/10.1016/j.foodres.2017.06.053
  10. McGregor, N.R. Pueraria lobata (Kudzu root) hangover remedies and acetaldehyde-associated neoplasm risk. Alcohol 2007, 41, 469-478. https://doi.org/10.1016/j.alcohol.2007.07.009
  11. Shi, S.; Ma, Y.; Zhang, Y.; Liu, L.; Liu, Q.; Peng, M.; Xiong, X. Systematic separation and purification of 18 antioxidants from Pueraria lobata flower using HSCCC target-guided by DPPH-HPLC experiment. Separation and Purification Technology 2012, 89, 225-233. https://doi.org/10.1016/j.seppur.2012.01.041
  12. Bebrevska, L.; Foubert, K.; Hermans, N.; Chatterjee, S.; Van Marck, E.; De Meyer, G.; Vlietinck, A.; Pieters, L.; Apers, S. In vivo antioxidative activity of a quantified Pueraria lobata root extract. Journal of Ethnopharmacology 2010, 127, 112-117. https://doi.org/10.1016/j.jep.2009.09.039
  13. Yao, M.; Liao, Y.; Li, G.Q.; Law, F.C.; Tang, Y. Quantitative analysis of two isoflavones in Pueraria lobata flowers from eleven Chinese provinces using high performance liquid chromatography. Chinese Medicine 2010, 5, 14. doi: 10.1186/1749-8546-5-14.
  14. Pei, X.P.; Pei, M.R.; Ding, H.Q. Chemical constituents from Pueraria lobata. Shanxi Daxue Xuebao 2010, 33, 423-424.
  15. Kinjo, J.; Takeshita, T.; Abe, Y.; Terada, N.; Yamashita, H.; Yamasaki, M.; Takeuchi, K.; Murakami, K.; Tomimatsu, T.; Nohara, T. Studies on the Constituents of Pueraria lobata. IV. : Chemical Constituents in the Flowers and the Leaves. Chemical and Pharmaceutical Bulletin 1988, 36, 1174-1179. https://doi.org/10.1248/cpb.36.1174
  16. Jin, S.E.; Son, Y.K.; Min, B.S.; Jung, H.A.; Choi, J.S. Anti-inflammatory and antioxidant activities of constituents isolated from Pueraria lobata roots. Archives of Pharmacal Research 2012, 35(5), 823-837. https://doi.org/10.1007/s12272-012-0508-x
  17. Wang, J.; Nie, S.; Cui, S.W.; Wang, Z.; Phillips, A.O.; Phillips, G.O.; Li, Y.; Xie, M. Structural characterization and immunostimulatory activity of a glucan from natural Cordyceps sinensis. Food Hydrocolloids 2017, 67, 139-147. https://doi.org/10.1016/j.foodhyd.2017.01.010
  18. Jacobs, M.D.; Harrison, S.C. Structure of an IκBα/NF-κB Complex. Cell 1998, 95(6), 749-758. https://doi.org/10.1016/S0092-8674(00)81698-0
  19. Suh, S.J.; Chung, T.W.; Son, M.J.; Kim, S.H.; Moon, T.C.; Son, K.H.; Kim, H.P.; Chang, H.W.; Kim, C.H. The naturally occurring biflavonoid, ochnaflavone, inhibits LPS-induced iNOS expression, which is mediated by ERK1/2 via NF-κB regulation, in RAW264.7 cells. Archives of Biochemistry and Biophysics 2006, 447, 136-146. https://doi.org/10.1016/j.abb.2006.01.016
  20. Shu, Y.; Liu, X.B.; Ma, X.H.; Gao, J.; He, W.; Cao, X.Y.; Chen, J. Immune response mechanism of mouse monocytes/macrophages treated with κ-carrageenan polysaccharide. Environmental Toxicology and Pharmacology 2017, 53, 191-198. https://doi.org/10.1016/j.etap.2017.06.010
  21. Li, Y.; Meng, T.; Hao, N.; Tao, H.; Zou, S.; Li, M.; Ming, P.; Ding, H.; Dong, J.; Feng, S.; Li, J.; Wang, X.; Wu, J. Immune regulation mechanism of Astragaloside IV on RAW264.7 cells through activating the NF-κB/MAPK signaling pathway. International Immunopharmacology 2017, 49, 38-49. https://doi.org/10.1016/j.intimp.2017.05.017
  22. In-mu Lee.Cancer and immunity-Development of anticancer immunotherapy using macrophages. Sejong science & techologly newsletter October 2016 Vol.11
  23. Camell C. D., Sander J., Spadaro O., Lee A., Nguyen K. Y., Wing A., Goldberg E. L., Youm Y., Brown C. W., Elsworth J., Rodeheffer M. S., Schultze J. L. and Dixit V. D. Inflammasome-driven catecholamine catabolism in macrophages blunts lipolysis during ageing. Nature 2017;550(7674): 119-123. https://doi.org/10.1038/nature24022
  24. Eun Jo. Tumor-Associated Macrophages: From Mechanisms to Therapy. Immunity, 2014;41(1):49-61. https://doi.org/10.1016/j.immuni.2014.06.010
  25. Gamper, N.; Ooi, L. Redox and nitric oxide-mediated regulation of sensory neuron ion channel function. Antioxidants & Redox Signaling 2015, 22 (6), 486-504. https://doi.org/10.1089/ars.2014.5884
  26. Steiner, N.; Balez, R.; Karunaweera, N.; Lind, J.M.; Munch, G.; Ooi, L. Neuroprotection of Neuro2a cells and the cytokine suppressive and anti-inflammatory mode of action of resveratrol in activated RAW264.7 macrophages and C8-B4 microglia. Neurochemistry International 2016, 95, 46-54. https://doi.org/10.1016/j.neuint.2015.10.013
  27. Shachar, I.; Karin, N. The dual roles of inflammatory cytokines and chemokines in the regulation of autoimmune diseases and their clinical implications. Journal of Leukocyte Biology 2013, 93, 51-61. https://doi.org/10.1189/jlb.0612293
  28. Shuai, K.; Liu, B. Regulation of JAK-STAT signalling in the immune system. Nature Reviews Immunology 2003, 3, 900-911. https://doi.org/10.1038/nri1226
  29. Yu, Z.M.; Huang, X.H.; Yan, C.Q.; Gao, J.; Liang, Z.S. Effect of Fuzheng Jiedu granule on immunological function and level of immune-related cytokines in immune-suppressed mice. Journal of Integrative Agriculture 2016, 15(3), 650-657. https://doi.org/10.1016/s2095-3119(14)60971-0
  30. Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in Inflammation, Immunity, and Disease. Cold Spring Harbor Perspectives in Biology 2014, 6, a016295 https://doi.org/10.1101/cshperspect.a016295
  31. Jucker, M.; Abts, H.; Li, W.; Schindler, R.; Merz, H.; Gunther, A.; von Kalle, C.; Schaadt, M.; Diamantstein, T.; Feller, A.C.; Krueger, G.R.F.; Diehl. V.; Blankenstein, T.; Tesch, H. Expression of Interleukin-6 and Interleukin-6 Receptor in Hodgkin's Disease. Blood 1991, 77, 2413-2418. https://doi.org/10.1182/blood.V77.11.2413.2413
  32. Newman, R.E.; Yoo, D.; LeRoux, M.A.; Danilkovitch-Miagkova, A. Treatment of Inflammatory Diseases with Mesenchymal Stem Cells. Inflammation & Allergy-Drug Targets 2009, 8, 110-123. https://doi.org/10.2174/187152809788462635
  33. Xing, Z.;, Gauldie, J.; Cox, G.; Baumann, H.; Jordana, M.; Lei, X.F.; Achong, M.K. IL-6 is an antiinflammatory cytokine required for controlling local or systemic acute inflammatory responses. Journal of Clinical Investigation 1998, 101, 311-320. https://doi.org/10.1172/JCI1368
  34. Kimura, A.; Kishimoto, T. IL-6: regulator of Treg/Th17 balance. European Journal of Immunology 2010, 40, 1830-1835. https://doi.org/10.1002/eji.201040391
  35. Esposito, E.; Cuzzocrea, S. TNF-alpha as a therapeutic target in inflammatory diseases, ischemia- reperfusion injury and trauma. Current Medicinal Chemistry 2009, 16(24), 3152-3167. https://doi.org/10.2174/092986709788803024
  36. Perez, C.; Albert, I.; DeFay, K.; Zachariades, N.; Gooding, L.; Kriegler, M., A nonsecretable cell surface mutant of tumor necrosis factor (TNF) kills by cell-to-cell contact. Cell 1990, 63, 251-258. https://doi.org/10.1016/0092-8674(90)90158-B
  37. Commins, S.P.; Borish, L.; Steinke, J.W. Immunologic messenger molecules: Cytokines, interferons, and chemokines. Journal of Allergy and Clinical Immunology 2010, 125(2), S53-S72. https://doi.org/10.1016/j.jaci.2009.07.008
  38. Cho, J.W.; Lee, K.S.; Kim, C.W. Curcumin attenuates the expression of IL-1β, IL-6, and TNF-α as well as cyclin E in TNF-α-treated HaCaT cells; NF-κB and MAPKs as potential upstream targets. International journal of molecular medicine 2007, 19, 469-474.
  39. Fisher, W.G.; Yang, P.C.; Medikonduri, R.K.; Jafri, M.S. NFAT and NFκB activation in T lymphocytes: a model of differential activation of gene expression. Annals of Biomedical Engineering 2006, 34, 1712-1728. https://doi.org/10.1007/s10439-006-9179-4
  40. Guha, M.; Mackman, N. LPS induction of gene expression in human monocytes. Cellular Signalling 2001, 13, 85-94. https://doi.org/10.1016/S0898-6568(00)00149-2