DOI QR코드

DOI QR Code

과산화수소 엽면 처리에 의한 수수에서 한발 스트레스 완화 효과

Mitigation Effects of Foliar-Applied Hydrogen Peroxide on Drought Stress in Sorghum bicolor

  • Shim, Doo-Do (Institute of Hadong Green Tea) ;
  • Lee, Seung-Ha (Department of Agronomy, Gyeongsang National University) ;
  • Chung, Jong-Il (Department of Agronomy, Gyeongsang National University) ;
  • Kim, Min Chul (Department of Agronomy, Gyeongsang National University) ;
  • Chung, Jung-Sung (Department of Agronomy, Gyeongsang National University) ;
  • Lee, Yeong-Hun (Department of Agronomy, Gyeongsang National University) ;
  • Jeon, Seung-Ho (Department, Sunchon National University) ;
  • Song, Gi-Eun (Department of Applied Biological Science, Applied Biology (BK Plus), Gyeongsang National University) ;
  • Shim, Sang-In (Department of Agronomy, Gyeongsang National University)
  • 투고 : 2020.03.17
  • 심사 : 2020.05.11
  • 발행 : 2020.06.01

초록

본 논문은 과산화수소 엽면 처리를 통해 수수에서 한발 스트레스 완화 효과가 있는지 알아보기 위하여 과산화수소 처리에 따른 생육 및 생리적 특성 변화와 단백질 변화를 분석하였다. 1. 포장 실험에서 한발 스트레스는 수수 생장을 감소시켰으나, 과산화수소 처리구에서는 과산화수소 무처리구보다 생육이 우수하였다. 또한 한발 조건에서 과산화수소 처리는 무처리에 비해 수량 관련 형질들의저하를 막는 효과를 보였다. 2. 엽 녹색도(SPAD) 및 엽록소 형광(Fv/Fm), 광합성 형질 조사에서 과산화수소 처리가 과산화수소 무처리보다 높았고, 포장 실험에서 엽내 과산화수소 함량은 적습+H2O2 처리가 적습+H2O 처리보다 과산화수소 함량이 227.8 µmol·g-1 높았고, 한발 조건에서 엽내 과산화수소 함량은 한발+H2O2 처리가 한발+H2O 처리보다 16.7 µmol·g-1으로 낮았다. 3. 한발 조건에서 과산화수소 처리는 여러 단백질의 발현을 변화시켰으며, 특히 광합성 관련 단백질인 ATP synthase deltal chain, cytochrome b6-f complex iron-sulfur subunit, ATP synthase subunit gamma, putative uncharacterized protein Sb02g002690, Sb07g027500와 Superoxide 라디칼을 제거해주는 superoxide dismutase가 증가한 것을 확인하였다. 그리고 단백질 보호와 복원에 관련된 heat shock protein의 발현 증가도 확인되었다. 종합적으로 과산화수소 엽면 처리가 한발 하에서 광합성 관련 단백질의 발현을 증가와 기공 개도를 높여 광합성 능력을 향상시켰다. 특히 엽내에 축적될 수 있는 활성산소종을 제거하는 항산화 능력이 높아져 한발 스트레스 대한 내성을 높여 수수의 생육과 수량성 저하가 억제되는 것을 확인할 수 있었다.

Global climatic change and increasing climatic instability threaten crop productivity. Due to climatic change, drought stress is occurring more frequently in crop fields. In this study, we investigated the effect of treatment with hydrogen peroxide (H2O2) before leaf development on the growth and yield of sorghum for minimizing the damage of crops to drought. To assess the effect of H2O2 on the growth of sorghum plant, 10 mM H2O2 was used to treat sorghum leaves at the 3-leaf stage during growth in field conditions. Plant height, stem diameter, leaf length, and leaf width were increased by 7.6%, 9.6%, 8.3% and 11.5%, respectively. SPAD value, chlorophyll fluorescence (Fv/Fm), photosynthetic rate, stomatal conductance, and transpiration rate were increased by 3.0%, 4.9%, 26.0%, 23.4% and 12.7%, respectively. The amount of H2O2 in the leaf tissue of sorghum plant treated with 10 mM H2O2 was 0.7% of the applied amount after 1 hour. The level increased to approximately 1.0% after 6 hours. The highest antioxidant activity measured by the Oxygen Radical Absorbance Capacity assay was 847.3 µmol·g-1 at 6 hour after treatment. However, in the well-watered condition, the concentration of H2O2 in the plant treated by the foliar application of H2O2 was 227.8 µmol·g-1 higher than that of the untreated control. H2O2 treatment improved all the yield components and yield-related factors. Panicle length, plant dry weight, panicle weight, seed weight per plant, seed weight per unit area, and thousand seed weight were increased by 8.8%, 18.0%, 24.4%, 24.7%, 29.9% and 7.1%, respectively. Proteomic analysis showed that H2O2 treatment in sorghum increased the tolerance to drought stress and maintained growth and yield by ameliorating oxidative stress.

키워드

참고문헌

  1. Abass, S. M. and H. I. Mohamed. 2011. Alleviation of adverse effects of drought stress on common bean (Phaseolus vulgaris L.) by exogenous application of hydrogen peroxide. Bangladesh J. Bot. 41 : 75-83.
  2. Abdel-Motagally, F. M. F., and M. El-Zohri. 2016. Improvement of wheat yield grown under drought stress by boron foliar application at different growth stages. J. Saudi Soc. Agri. Sci. In press.
  3. Agashe, V. R. and F. U. Hartl. 2000. Roles of molecular chaperones in cytoplasmic protein folding. Semin. Cell Dev. Biol. 11 : 15-25. https://doi.org/10.1006/scdb.1999.0347
  4. Ali, G. M. and M. Setsuko. 2006. Proteomic analysis of rice leaf sheath during drought stress. J. Proteome Res. 5 : 396-403. https://doi.org/10.1021/pr050291g
  5. Apel, K. and H. Hirt. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55 : 373-399. https://doi.org/10.1146/annurev.arplant.55.031903.141701
  6. Asada, K. 1999. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu. Rev. Plant. Biol. 50 : 601-639. https://doi.org/10.1146/annurev.arplant.50.1.601
  7. Azevedo Neto, A. D., J. T. Prisco, J. Eneas-Filho, J. V. Medeiros, and E. Gomes-Filho. 2005. Hydrogen peroxide pre-treatment induces salt-stress acclimation in maize plants. J. Plant Physiol. 162 : 1114-1122. https://doi.org/10.1016/j.jplph.2005.01.007
  8. Beck, C., J. Grieser, M. Kottek, F. Rubel, and B. Rudolf. 2006. Characterizing global climate change by means of Koppen climate classification. Deutscher Wetterdienst. 3 : 413-423.
  9. Beroud, C. and T. Soussi. 1997. p53 and APC gene mutations: software and databases. Nucleic Acids Res. 25 : 138. https://doi.org/10.1093/nar/25.1.138
  10. Birchmeier, W. and J. Behrens. 1994. Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochem. Bioph. Res. Co. 1198 : 11-26.
  11. Boyer, J. S. 1970. Leaf enlargement and metabolic rates in corn, soybean, and sunflower at various leaf water potentials. Plant Physiol. 46 : 233-235. https://doi.org/10.1104/pp.46.2.233
  12. Bradford, M. M. 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72 : 248-254. https://doi.org/10.1006/abio.1976.9999
  13. Brestic, M., G. Cornic, M. J. Fryer, and N. R. Baker. 1995. Does photorespiration protect the photosynthetic apparatus in French bean leaves from photoinhibition during drought stress. Planta. 196 : 450-457.
  14. Byun, H. J. and S. J. Choi. 2003. Suppression of post-harvest grey mold rot incidence in strawberry by field application of hydrogen peroxide. J. Kor. Soc. Hort. Sci. 44 : 859-862.
  15. Chang, H. G. and Y. S. Park. 2005. Effects of waxy and normal sorghum flours on sponge cake properties. Food Eng. Prog. 9:199-207.
  16. Chaves, M. M., J. Flexas, and C. Pinheiro. 2009. Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Ann. Bot. 103 : 551-560. https://doi.org/10.1093/aob/mcn125
  17. Costa, F. M. G., A. T. Pham Thi, C. Pimentel, R. O. Pereyra Rossiello, Y. Zuily-Fodil, and D. Laffray. 2000. Differences in growth and water relations among Phaseolus vulgaris cultivars in response to induced drought stress. Environ. Exp. Bot. 43 : 227-237. https://doi.org/10.1016/S0098-8472(99)00060-X
  18. Cramer, G. R., S. C. Van Sluyter, D. W. Hopper, D. Pascovici, T. Keighley, and P. A. Haynes. 2013. Proteomic analysis indicates massive changes in metabolism prior to the inhibition of growth and photosynthesis of grapevine (Vitis vinifera L.) in response to water deficit. BMC Plant Biol. 13-49.
  19. Djanaguiraman, M., J. A. Sheeba, A. K. Shanker, D. D. Devi, and U. Bangarusamy. 2006. Rice can acclimate to lethal level of salinity by pretreatment with sublethal level of salinity through osmotic adjustment. Plant Soil. 284 : 363-373. https://doi.org/10.1007/s11104-006-0043-y
  20. Fischer, K. S., G. O. Edmeades, and E. C. Johnson. 1989. Improvement of maize yield under moisture-deficits. Field Crops Res. 22 : 227-243. https://doi.org/10.1016/0378-4290(89)90094-4
  21. Fraedrich, K., F. W. Gerstengarbe, and P. C. Werner. 2001, Climate shifts in the last century. Climatic Change. 50 : 405-417. https://doi.org/10.1023/A:1010699428863
  22. Gregorio, B. E., A. H. Jose, and D. V. Pedro. 2012. Role of $H_2O_2$ in pea seed germination. Plant Signal. Behav. 7 : 193-195. https://doi.org/10.4161/psb.18881
  23. Hattori, T., S. Inanaga, H. Araki, P. An, S. Morita, M. Luxova, and A. Lux. 2005. Application of silicon enhanced drought tolerance in Sorghum bicolor. Physiol. Plantarum. 123 : 459-466. https://doi.org/10.1111/j.1399-3054.2005.00481.x
  24. Hsiao, T. C. 1973. Plant response to water stress. Plant Physiol. 24 : 519-570. https://doi.org/10.1146/annurev.pp.24.060173.002511
  25. Hu, X., X. Wu, C. Li, M. Lu, T. Liu, Y. Wang, and W. Wang. 2012. Abscisic acid refines the synthesis of chloroplast proteins in maize (Zea mays) in response to drought and light. PLOS One. 7 : e49500. https://doi.org/10.1371/journal.pone.0049500
  26. Kim, H. J., B. Wang, Q. Ding, and I. U. Chung. 2008, Changes in arid climate over North China detected by the Koppen climate classification. J. Meteorol. Soc. Jap. 86 : 981-990. https://doi.org/10.2151/jmsj.86.981
  27. Kim, S. G., J. S. Lee, J. T. Kim, Y. S. Kwon, D. W. Bae, H. H. Bae, B. Y. Son, S. B. Baek, Y. U. Kwon, M. O. Woo, and S. H. Shin. 2015. Physiological and proteomic analysis of the response to drought stress in an inbred Korean maize line. ProQuest. 8 : 159-168.
  28. Lee, M. S. 2004. Bioactive properties in whole grains. J. Korean Soc. Food Sci. Nutr. 9 : 19-25.
  29. Li, L., J. Staden, and A. K. Jager. 1998. Effects of plant growth regulators on the antioxidant system in seedlings of two maize cultivars subjected to water stress. Plant Growth Regul. 25 : 81-87. https://doi.org/10.1023/A:1010774725695
  30. Liu, z., B. Zhao, Y. Shi, C. Guo, H. Yang, and Z. Li. 2010. Novel nonenzymatic hydrogen peroxide sensor based on iron oxidesilver hybrid submicrospheres. Talanta. 81 : 1650-1654. https://doi.org/10.1016/j.talanta.2010.03.019
  31. Lu, H. and V. J. Higgins. 1999. The effect of hydrogen peroxide on the viability of tomato cells and of the fungal pathogen Cladosporium fulvum. Physiol. Mol. Plant Pathology. 54 : 131-143. https://doi.org/10.1006/pmpp.1998.0195
  32. Ou, J. B., H. W. Maureenl, and L. Ronald. 2001. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. Agric. Food Chem. 49 : 4619-4626. https://doi.org/10.1021/jf010586o
  33. Park, W. S., R. R. Oh, J. Y. Park, S. H. Lee, M. S. Shin, Y. S. Kim, S. Y. Kim, H. K. Lee, P. J. Kim, S. T. Oh, N. J. Yoo, and J. Y. Lee. 1999. Frequent somatic mutations of the beta-catenin gene in intestinal-type gastric cancer. Cancer Res. 59 : 4257-4260.
  34. Roovers, R. C., E. van der Linden, H. Zijlema, A. de Bruine, J. W. Arends, and H. R. Hoogenboom. 2001. Evidence for a bias toward intracellular antigens in the local humoral anti-tumor immune response of a colorectal cancer patient revealed by phage display. Int. J. Cancer. 93 : 832-840. https://doi.org/10.1002/ijc.1382
  35. Saglam, A., A. Kadioglu, M. Demiralay, and R. Terzi. 2014. Leaf rolling reduces photosynthetic loss in maize under severe drought. Acta Bot. Croat. 73 : 315-332. https://doi.org/10.2478/botcro-2014-0012
  36. Seki, M., T. Umeawa, K. Urano, and K. Shinozaki. 2007. Regulatory metabolic networks in drought stress responses. Plant Biol. 10 : 296-302.
  37. Souza, R. P., E. C Machado, J. A. B. Silva, A. M. M. A. Lagoa, and J. A. G. Silveira. 2004. Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. Environ. Exp. Bot. 51 : 45-56. https://doi.org/10.1016/S0098-8472(03)00059-5
  38. Tuinstra, M. R., E. M. Grote, P. B. Goldsbrough, and G. Ejeta. 1997. Genetic analysis of post-flowering drought tolerance and components of grain development in Sorghum bicolor (L.) Moench. Mol Breeding. 3 : 439-448. https://doi.org/10.1023/A:1009673126345
  39. Wang, W., F. Tai, and S. Chen. 2008. Optimizing protein extraction from plant tissues for enhanced proteomics analysis. J. Sep. Sci. 31 : 2032-2039. https://doi.org/10.1002/jssc.200800087
  40. Woo, Y. H., H. J. Kim, Y. C. Huh, T. Y. Kim, K. D. Kim, I. H. Cho, K. D. Ko, K. H. Lee, and K. H. Hong. 2005. Effect of high temperature adaptable improvement on cucumber (Cucumis sativus) of greenhouse according to hydrogen peroxide treatment at summer. J. VIB Control. 14 : 95-99.
  41. Xu, Y., P. Burgess, and B. Huang. 2015. Root antioxidant mechanisms in relation to root thermotolerance in perennial grass species contrasting in heat tolerance. PLOS One. 1-19.
  42. Yokozaki, H., W. Yasui, and E. Tahara. 2001. Genetic and epigenetic changes in stomach cancer. Int. Rev. Cytol. 204 : 49-95. https://doi.org/10.1016/S0074-7696(01)04003-7
  43. Yordanov, I., V. Velikova, and T. Tsonev. 2000. Plant responses to drought, acclimation, and stress tolerance. Photosynthetica. 38 : 171-186. https://doi.org/10.1023/A:1007201411474
  44. Yushi, I., Y. Haruka, Y. Takashi, I. I. Mari, A. Susumu, and S. H. Zheng. 2011. Hydrogen peroxide spraying alleviates drought stress in soybean plants. J. Plant Physiol. 168 : 1562-1567. https://doi.org/10.1016/j.jplph.2011.02.003