DOI QR코드

DOI QR Code

침수 처리에 따른 B73 옥수수의 생육 반응 및 유전자 발현 분석

Analysis of Growth Response and Gene Expression by Waterlogging Stress on B73 Maize

  • 고영삼 (농촌진흥청 국립식량과학원 중부작물부) ;
  • 김정태 (농촌진흥청 국립식량과학원 기획조정과) ;
  • 배환희 (농촌진흥청 국립식량과학원 중부작물부) ;
  • 손범영 (농촌진흥청 국립식량과학원 중부작물부) ;
  • 이기범 (농촌진흥청 국립식량과학원 중부작물부) ;
  • 하준영 (농촌진흥청 국립식량과학원 중부작물부) ;
  • 김선림 (농촌진흥청 국립식량과학원 중부작물부) ;
  • 백성범 (농촌진흥청 국립식량과학원 중부작물부)
  • Go, Young Sam (Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Kim, Jung-Tae (Planning and Coordination Division, National Institute of Crop Science, Rural Development Administration) ;
  • Bae, Hwan Hee (Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Son, Beom-Young (Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Yi, Gibum (Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Ha, Jun Young (Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Kim, Sun-Lim (Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Baek, Seong-Bum (Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration)
  • 투고 : 2020.04.12
  • 심사 : 2020.05.11
  • 발행 : 2020.06.01

초록

본 실험은 옥수수(B73)에서 습해에 대한 생육 특성 변화와 습해 관련 유전자 발현 양상을 조사하여 내습성 옥수수 마커 개발을 위한 기초자료로 활용하고자 수행되었다. 1. 침수 처리구에서 초장(21.3%), 근장(50.6%), 잎 및 뿌리의 무게(21.6%), 잎의 SPAD 값(55.7%) 및 엽록소 함량(35.3%)은 감소하였고, 뿌리의 ROS의 함량은 2시간까지 46.5% 증가하다가 6시간 후에는 차이가 발생하지 않았다. 2. 뿌리 두께가 대조구에 비해 습해 처리구에서 2.5배이상 증가하였고, 뿌리 피층에 다수의 통기조직이 형성되었다. 3. 통기조직 형성(EXP1)과 에틸렌 생합성에 관련된 유전자(EREBP105) 등 습해 관련 유전자 7개가 습해 처리구에서 2.5배 이상 발현이 증가되는 것을 Microarray 분석을 통해 선별하고 RT-PCR을 통해 확인하였다.

Maize is thought to be an alternative crop to rice in paddy fields for efficient field management and maintenance of rice production at appropriate levels in Korea. Thus efforts to breed waterlogging-tolerant maize cultivars have been ongoing. However, molecular studies related to waterlogging tolerance are limited for developing molecular markers to select waterlogging tolerant maize varieties. In this study, we examined molecular biological changes of B73 in the V3 stage after immersion treatment for 7 days. Overall growth of maize was lower in treated samples compared to non-immersed control samples. The length of leaf and root decreased by 21.3% and 50.6%, respectively and the weight of root reduced by 21.6%. Soil plant analysis development (SPAD) value and chlorophyll content of leaf also decreased by 55.7% and 35.3%, respectively. Reactive oxygen species (ROS) content of root increased by 46.5% at 2 hours in immersion treatment. In addition, immersed roots were 2.5-fold thickened with additional aerenchyma formation in the cortex. In order to identify the causes of these changes, we performed a microarray and found increased expression of genes, such as WIP1, PMIP2, EXPA1, TPS1, and MAS1, in immersed samples. These differentially expressed genes and expression of previously reported genes, including ALDH2, Wusl1032, UP-1, UP-2, and CAT2 were further confirmed with qRT-PCR. Here, we report 7 differentially expressed genes after immersing treatment, which may be utilized as useful resources for breeding waterlogging- tolerant maize.

키워드

참고문헌

  1. Alamgir, H. and S. N. Uddin. 2011. Mechanisms of waterlogging tolerance in wheat: morphological and metabolic adaptations under hypoxia or anoxia. Aust. J. Crop Sci. 5(9) : 940-1110.
  2. Arora, K., K. K. Panda, S. Mittal, M. G. Mallikarjuna, R. R. Atmakuri, K. D. Prasanta, and T. Nepolean. 2017. RNAseq revealed the important gene pathways controlling adaptive mechanisms under waterlogged stress in maize. Sci. Rep. 7 : 10950. https://doi.org/10.1038/s41598-017-10561-1
  3. Ashraf, M. A., M. S. Ahmad, M. Ashraf, F. Al-Qurainy, and M. Y. Ashraf. 2011. Alleviation of waterlogging stress in upland cotton (Gossypium hirsutum L.) by exogenous application of potassium in soil and as a foliar spray. Crop Pasture Sci. 62 : 25-38. https://doi.org/10.1071/CP09225
  4. Boru, G., T. Vantoai, J. Alves, D. Hua, and M. Knee. 2003. Response of soybean to oxygen deficiency and elevated root-zone carbon dioxide concentration. Ann. Bot. 91(4) : 447-453. https://doi.org/10.1093/aob/mcg040
  5. Chalivendra, C. S. and M. S. Martin. 2003. Molecular and cellular adaptations of maize to flooding stress. Ann. Bot. 91(2) : 119-127. https://doi.org/10.1093/aob/mcf210
  6. Christianson, J. A., D. J. Llewellyn, E. S. Dennis, and I. W. Wilson. 2010. Global gene expression responses to waterlogging in roots and leaves of cotton (Gossypium hirsutum L.). Plant Cell Physiol. 51(1) : 21-37. https://doi.org/10.1093/pcp/pcp163
  7. Gill, M. B., F. Zeng, L. Shabala, G. Zhang, M. Yu, V. Demidchik, S. Shabala, and M. Zhou. 2019. Identification of QTL related to ROS formation under hypoxia and their association with waterlogging and salt tolerance in barley. Int. J. Mol. Sci. 20(3) : 699-714. https://doi.org/10.3390/ijms20030699
  8. Komatsu, S., C. Han, Y. Nanjo, M. Altaf-Un-Nahar, K. Wang, D. He, and P. Yang. 2013. Label-free quantitative proteomic analysis of abscisic acid effect in early-stage soybean under flooding. J. Proteome Res. 12(11) : 4769-4784. https://doi.org/10.1021/pr4001898
  9. Kong, F., A. Oyanagi, and S. Komatsu. 2010. Cell wall proteome of wheat roots under flooding stress using gel-based and LC MS/MS based proteomics approaches. Biochim. Biophys. Acta 1804(1) : 124-136. https://doi.org/10.1016/j.bbapap.2009.09.023
  10. Koo, S. C, H. T. Kim, B. K. Kang, Y. H. Lww, K. W. Oh, H. Y. Kim, I. Y. Back, H. T. Yun, and M. S. Choi. 2014. Screening of Flooding Tolerance in Soybean Germplasm Collection. Korean J. Breed. Sci. 46(2) : 129-135 https://doi.org/10.9787/KJBS.2014.46.2.129
  11. Liu, F., T. Vantoai, G. Bock, L.D. Linford, and J. Quackenbush. 2005. Global transcription profiling reveals novel insights into hypoxic response in Arabidopsis. Plant Physiol. 137 : 1115-1129. https://doi.org/10.1104/pp.104.055475
  12. Liu, Z., K. Sunita, L. Zhang, and W. Doreen. 2012. Characterization of miRNAs in response to short-term waterlogging in three inbred lines of Zea mays. PLoS ONE 7(6) : e39786. https://doi.org/10.1371/journal.pone.0039786
  13. Moon, J., S. Shin, H. C. Kim, K. Song, J. Y. Kim, K. Kim, and B. Lee. 2018. Assessment of the candidate genes of expression markers associated with drought stress in maize seedlings. Korean J. Breed. Sci. 50(3) : 224-235. https://doi.org/10.9787/KJBS.2018.50.3.224
  14. Qiu, F. Z., Y. L. Zheng, Z. L. Zhang, and S. Z. Xu. 2007. Mapping of QTL associated with waterlogging tolerance during the seedling stage in maize. Ann. Bot. 99(6) : 1067-1081. https://doi.org/10.1093/aob/mcm055
  15. Ren, B., J. Zhang, S. Dong, P. Liu, and B. Zhao. 2016. Effects of waterlogging on leaf mesophyll cell ultrastructure and photosynthetic characteristics of summer maize. PLoS ONE 11(9) : e0161424. https://doi.org/10.1371/journal.pone.0161424
  16. Ren, B. Z., J. W. Zhang, X. Li, X. Fan, S. T. Dong, B. Zhao, and P. Liu. 2014. Effect of waterlogging on leaf senescence characteristics of summer maize in the field. J. Appl. Ecol. 25(4) : 1022-1028.
  17. Salah, A., J. Li, J. Ge, C. Cao, H. Li, Y. Wang, Z. Liu, M. Zhan, and M. Zhao. 2019. Morphological and physiological responses of maize seedlings under drought and waterlogging. J. Agr. Sci. Tech. 21(5) : 1199-1214.
  18. Sallam, A. and H. D. Scott. 1987. Effects of prolonged flooding on soybeans during early vegetative growth. Soil Sci. 144(1) : 61-66. https://doi.org/10.1097/00010694-198707000-00010
  19. Tang, B., S. Xu, X. Zou, Y. Zheng, and F. Qiu. 2010. Changes of antioxidative enzymes and lipid peroxidation in leaves and roots of waterlogging-tolerant and waterlogging-sensitive maize genotypes at seedling stage. Agric. Sci. China. 9 : 651-661. https://doi.org/10.1016/S1671-2927(09)60140-1
  20. Yamauchi, T., I. Rajhi, and M. Nakazono. 2011. Lysigenous aerenchyma formation in maize root is confined to cortical cells by regulation of genes related to generation and scavenging of reactive oxygen species. Plant Signal. Behav. 6(5) : 759-761. https://doi.org/10.4161/psb.6.5.15417
  21. Yordanova, R. Y, K. G Zheng, Z. G. Stoinova, and L. P. Popova. 2004. Changes in the leaf polypeptide patterns of barley plants exposed to soil flooding. Biologia Plantarum 48(2) : 301-304. https://doi.org/10.1023/B:BIOP.0000033461.68221.5f