• Title/Summary/Keyword: B73 maize

Search Result 14, Processing Time 0.022 seconds

Analysis of Growth Response and Gene Expression by Waterlogging Stress on B73 Maize (침수 처리에 따른 B73 옥수수의 생육 반응 및 유전자 발현 분석)

  • Go, Young Sam;Kim, Jung-Tae;Bae, Hwan Hee;Son, Beom-Young;Yi, Gibum;Ha, Jun Young;Kim, Sun-Lim;Baek, Seong-Bum
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.2
    • /
    • pp.104-112
    • /
    • 2020
  • Maize is thought to be an alternative crop to rice in paddy fields for efficient field management and maintenance of rice production at appropriate levels in Korea. Thus efforts to breed waterlogging-tolerant maize cultivars have been ongoing. However, molecular studies related to waterlogging tolerance are limited for developing molecular markers to select waterlogging tolerant maize varieties. In this study, we examined molecular biological changes of B73 in the V3 stage after immersion treatment for 7 days. Overall growth of maize was lower in treated samples compared to non-immersed control samples. The length of leaf and root decreased by 21.3% and 50.6%, respectively and the weight of root reduced by 21.6%. Soil plant analysis development (SPAD) value and chlorophyll content of leaf also decreased by 55.7% and 35.3%, respectively. Reactive oxygen species (ROS) content of root increased by 46.5% at 2 hours in immersion treatment. In addition, immersed roots were 2.5-fold thickened with additional aerenchyma formation in the cortex. In order to identify the causes of these changes, we performed a microarray and found increased expression of genes, such as WIP1, PMIP2, EXPA1, TPS1, and MAS1, in immersed samples. These differentially expressed genes and expression of previously reported genes, including ALDH2, Wusl1032, UP-1, UP-2, and CAT2 were further confirmed with qRT-PCR. Here, we report 7 differentially expressed genes after immersing treatment, which may be utilized as useful resources for breeding waterlogging- tolerant maize.

Genetic Studies of Major Agronomic Traits in Hybrid Populations of Maize Inbred Lines. (옥수수 유망자식계통들의 잡종집단에서 주요 농업형질들의 유전분석)

  • 김남수;이주경;박종열;박기진;류시환;신지현;이명숙;민황기
    • Korean Journal of Plant Resources
    • /
    • v.17 no.3
    • /
    • pp.304-313
    • /
    • 2004
  • This study was conducted to find out the scientific maize breeding protocol for developing high performing single cross hybrid using introduced U.S. elite inbred lines; the pattern of inheritance, heterosis and heritabilities of six agronomic traits were studied in the progenies derived from five crosses (Mo17/B14A, Va85/B73, C103/ND203, FR35/Oh43, Wf9/A632). Among the five cross combinations, the cross combination of Mo17/B14A showed the highest heterosis for the most agronomic traits. Among 6 agronomic traits, the grain yield showed the highest heterosis effect in most cross combinations. Most of the agronomic traits in this study showed more than 50% heritability for six cross combinations, with an exception of the ear length trait. In conclusion, since Mo17/B14A showed excellent performance for most of the agronomic traits, these inbred lines were desirable combination and regarded as superior germ plasm sources for F1 hybrid development. The results of current studies will be utilized for developing high performing single cross hybrid from maize inbred lines, and will be used for the further genetic analysis of agronomic traits and maize breeding programs.

Evaluation of Drought Tolerance using Anthesis-silking Interval in Maize

  • Kim, Hyo Chul;Moon, Jun-Cheol;Kim, Jae Yoon;Song, Kitae;Kim, Kyung-Hee;Lee, Byung-Moo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.62 no.1
    • /
    • pp.24-31
    • /
    • 2017
  • We screened the drought tolerant maize using seventeen maize genotypes from different sources, nine inbred genotypes from United States Department of Agriculture (USDA) (B73, CML103, CML228, CML277, CML322, CML69, Ki3, Ki11, and NC350), three Southeast Asian genotypes (DK9955, LVN-4, and 333), and five Korean hybrids (Cheongdaok, Gangdaok, Ilmichal, Kwangpyeongok, and Pyeonganok). We evaluated anthesis-silking interval (ASI), leaf senescence (LS), ears per plant (EPP), tassel length (TL), and fresh weight (FW) at silking date. According to ASI and LS examination, CML103 and Kill were drought tolerant genotypes, wheareas Ki3 and 333 were drought susceptible. EPP, TL, and FW differed according to drought resistance. Grain yield was correlated strongly with ASI, but moderately with LS. Difference in ASI between drought-stressed (DS) and well-watered (WW) conditions was less than three days in CML228, CML103, Cheongdaok, NC350, B73, Ki11, CML322, and Kwangpyeongok, whereas that of Ki3, Pyeonganok, and Gangdaok was more than 6.5 days. We concluded that CML228, CML103, Cheongdaok, NC350, B73, Ki11, CML322, and Kwangpyeongok are drought tolerant genotypes, whereas Ki3, Pyeonganok, and Gangdaok are drought susceptible.

Gene Expression Analysis and Polymorphism Discovery to Investigate Drought Responsive System in Tropical Maize

  • Song, Kitae;Kim, Hyo Chul;Kim, Kyung-Hee;Moon, Jun-Cheol;Kim, Jae Yoon;Lee, Sang-Kyu;Lee, Byung-Moo
    • Plant Breeding and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.354-362
    • /
    • 2018
  • Maize has high food and industrial value, whereas has difficulties in research because of their complex and huge size genome. Nested association mapping (NAM) was constructed to better understand maize genetics. However, most studies were conducted using the reference genome B73, and only a few studies were conducted on tropical maize. Ki3, one of the founder lines of the NAM population, is a tropical maize. We analyzed the genetic characteristics of Ki3 by using RNA sequencing and bioinformatics tools for various genetic studies. As results, a total of 30,526 genes were expressed, and expression profile were constructed. A total of 1,558 genes were differentially expressed in response to drought stress, and 513 contigs of them come from de novo assemblies. In addition, high-density polymorphisms including 464,930 single nucleotide polymorphisms (SNPs), 21,872 multiple nucleotide polymorphisms (MNPs) and 93,313 insertions and deletions (InDels) were found compared to reference genome. Among them, 15.0 % of polymorphisms (87,838) were passed non-synonymous test which could alter amino acid sequences. The variants have 66,550 SNPs, 5,853 MNPs, and 14,801 InDels, also proportion of homozygous type was higher than heterozygous. These variants were found in a total of 15,643 genes. Of these genes, 637 genes were found as differentially expressed genes (DEGs) under drought stress. Our results provide a genome-wide analysis of differentially expressed genes and information of variants on expressed genes of tropical maize under drought stress. Further characterization of these changes in genetic regulation and genetic traits will be of great value for improvement of maize genetics.

Callus induction and plant regeneration from immature zygotic embryos of various maize genotypes (Zea mays L .) (다양한 계통의 옥수수 미성숙배로부터 캘러스 유도와 식물체 재분화)

  • Hong, Joon Ki;Park, Ki Jin;Lee, Gang-Seob;Kim, Dool Yi;Kim, Ju-Kon;Lee, Seung Bum;Suh, Eun Jung;Lee, Yeon-Hee
    • Journal of Plant Biotechnology
    • /
    • v.44 no.1
    • /
    • pp.49-55
    • /
    • 2017
  • We investigated the callus induction and plant regeneration ability of 16 maize genotypes, including the Korean inbred lines, using 9 to 15 day-old immature zygotic embryos from maize grown in pots and from field cultures. Immature zygotic embryos placed on MS medium supplemented with L-proline 0.7 g/L, MES 0.5 g/L, Dicamba 1.5 mg/L, 2,4-D 0.5 mg/L, $AgNO_3$ 4 mg/L, and sucrose 20 g/L, showed the highest frequency of callus induction. The highest number of shoots regenerated when the embryogenic callus were transferred to MS medium supplemented with 5 mg/L zeatin. The root formation was observed when shoots were grown on MS medium supplemented with 0.2 mg/L indole-3-butyric acid (IBA). Additionally, under the same culture conditions, immature zygotic embryos from maize grown in the field also had a high frequency of plant regeneration. Except one genotype, 15 genotypes showed callus induction and shoot regeneration. Among the 16 genotypes tested, H99, B98, HW3, and B73 yielded the best plant regeneration. H99 showed maximum shoot formation from the primary embryogenic callus. The results suggest that genotypes and growth conditions of the maize plant plays very important roles for enhancing the embryogenesis competence of immature zygotic embryos. The successful regeneration from immature zygotic embryos of maize inbred lines provides a basis for molecular breeding of new cultivars by genetic transformation.

Simulation of the Effects of Climate Change on Yield of Maize in Zimbabwe (기후변화가 짐바브웨 옥수수 수확량에 미치는 영향 모의)

  • Temba, Nkomozepi;Chung, Sang-Ok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.3
    • /
    • pp.65-73
    • /
    • 2011
  • 기후변화는 에너지 수지와 물 수지의 변화를 초래하여 육상 생물권에 영향을 미칠 것이다. 기온과 강수량의 변화와 대기중의 탄산가스 농도 변화는 작물의 생육환경을 크게 변화시킬 것이다. 본 연구에서는 FAO AquaCrop 모형을 이용하여 기온과 강수량의 변화와 대기중 탄산가스 농도의 변화가 짐바브웨의 옥수수 수확량에 미치는 영향을 분석하였다. 미래 기후 값은 HadCM3 모형 예측 값을 change factor 기법으로 상세화 하였다. 배출 시나리오는 A2와 B2를 선정하였으며 시간대는 2020s, 2050s 및 2080s의 30년 기간을 선정하였다. 기준작물 증발산량은 Penman-Monteith 식으로 산정하였다. 관개용수 공급이 충분한 것으로 가정하고 전통적인 보충관개를 실시하였을 때 기준년도 (1970s)에 비해 옥수수 증발산량은 최대 26 %, 옥수수 잠재 수확량은 최대 93 %까지 증가할 것으로 예측되었으며 물의 생산성은 최대 53 %까지 증가할 것으로 예측되었다.

Plant genome analysis using flow cytometry

  • Lee Jai-Heon;Kim Kee-Young;Chung Dae-Soo;Chung Won Bok;Kwon Oh-Chang
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 1999.05a
    • /
    • pp.162-163
    • /
    • 1999
  • The goal of this research was (1) to describe the conditions and parameters required for the cell cycle synchronization and the accumulation of large number of metaphase cells in maize and other cereal root tips, (2) to isolate intact metaphase chromosomes from root tips suitable for characterization by flow cytometry, and (3) to construct chromosome-specific libraries from maize. Plant metaphase chromosomes have been successfully synchronized and isolated from many cereal root-tips. DNA synthesis inhibitor (hydroxyurea) was used to synchronize cell cycle, follwed by treatement with trifluralin to accumulate metaphase chromosomes. Maize flow karyotypes show substantial variation among inbred lines. thish variation should be sueful in isolating individual chromosome types. In addition, flow cytometry is a useful method to measure DNA content of individual chromosomes in a genotyps, and to detect chromosomal variations. Individual chromosome peaks have been sorted from the maize hybrid B73/Mol7. Libraries were generated form the DOP-PCR amplification product from each peak. To date, we have analyzed clones from a library constructed from the maize chromosome 1 peak. Hybridization of labeled genomic DNA to clone inserts indicated that $24\%,\;18\%,\;and\;58\%$ of the clones were highly repetitive, medium repetitive, and low copy, respectively. Fifty percent of putative low cpoy clones showed single bands on inbred screening, blots, and the remaining $50\%$ were low copy repeats. Single copy clones showing polymorphism will be mapped using recombinant inbred mapping populations. Repetitive clones are being characterized by Southern blot analysis, and will be screened by in situ hybridization for their potential utility as chromosome specific markers.

  • PDF

Distinguishing the Korean Silage Corn Varieties through Development of PCR-Based SNP Marker (SNP마커 개발을 통한 사료용 옥수수 품종판별)

  • Kim, Sang Gon;Lee, Jin-Seok;Bae, Hwan Hee;Kim, Jung-Tae;Son, Beom-Young;Baek, Seong-Bum
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.37 no.2
    • /
    • pp.168-175
    • /
    • 2017
  • Single nucleotide polymorphisms (SNP) markers allow rapid screening of crop varieties in early growth stages. We developed a modified SNP PCR procedure for assaying SNPs in maize. For SNP marker development, we chosen 200 SNP sites from MaizeGDB database, and designed two base pair mismatch primers based on putative SNP site of B73 genome sequence. PCR products size was from 200 to 500 bp or was not shown in the case of SNP site existing in Korean silage corns. Using previously discovered 16 primer sets, we investigated distinctness of 50 silage F1 hybrid corns including 10 Korean silage corns developed by RDA such as Gangdaok, Kwangpyeongok, Dapyeongok, Andaok, Yanganok, Singwangok, Jangdaok, Cheongdaok, Pyeonggangok, and Pyeonganok as well as 40 foreign commercial silage corns. From cluster analysis, we confirmed that 10 Korean silage F1 hybrid corns were clearly distinguished except for Singwangok, P1395, and several foreign commercial corns, and selected minimum SNP primer combination for Gangdaok, Jangdaok, Pyeonggangok, and Pyeonganok. Therefore, development of SNP marker sets might be faster, cheaper, and feasible breed discrimination method through simple PCR and agarose gel electrophoresis.

Inheritance of Tolerance of Maize Inbreds to Exserohilum turcicum in North Korea

  • Kim, Soon-Kwon;Lee, Duk-Kyu;Lee, Joon-Ho;Jeong, Jae-Bong;Nwe, Win-Win;Han, Hyoung-Jai;Lee, Kwang-Soo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.58 no.2
    • /
    • pp.91-106
    • /
    • 2013
  • Exserohilum turcicum is considered serious destructive disease of maize (Zea mays L.) in North Korea. This study aimed to understand genetic inheritance and combining ability of newly bred lines of maize tolerant to E. turcicum by diallel crosses. Three diallel sets for two different ecological regions and one agronomic trait; eastern (E), northern (N) and stay green (SG) involving 29 inbred lines were tested in eight locations of 2000 and 2001. E. turcicum infections were under natural conditions, respectively. Lines used were selected for high yield potential in test crosses with good agronomic traits and tolerance to biotic and abiotic stresses. Selection for race specific high resistance to biotic stresses was avoided to select quantitatively inherited genes. Host plant responses to E. turcicum were rated on a scale of 1 (highly tolerant) to 9 (highly susceptible). Highly significant variations were recorded in all trials. General combining ability (GCA) mean square was roughly twice that of specific combining ability (SCA). The genotype (G) by environment (E) interaction was highly significant. The overall results of genetic studies in three diallel sets show that genetic control for inbred tolerance to E. turcicum is polygenic and quantitatively inherited. New inbreds; E-3, N-1 and SG-4 confer better tolerance to E. turcicum than the widely used inbreds; Mo17, and B73. Proper use of genetic information from this study shall increase of corn production under high E. turcicum infection in the Far Eastern Regions of Korea and China.

The Study of Genetic Diversity for Drought Tolerance in Maize (옥수수 한발 내성에 관한 유전적 다양성 조사)

  • Kim, Hyo Chul;Lee, Yong Ho;Kim, Kyung-Hee;Shin, Seungho;Song, Kitae;Moon, Jun-Cheol;Lee, Byung-Moo;Kim, Jae Yoon
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.4
    • /
    • pp.223-232
    • /
    • 2016
  • Drought is one of important environmental stress for plant. Drought has deleterious effect to plant growth including maize (Zea mays L.) such as vegetative and/or reproductive growth, root extension, photosynthesis efficiency, flowering, anthesis-silking interval (ASI), fertilization, and grain filling. In this study, we screened drought tolerant maize in 21 cultivars from different sources, sixteen NAM parent lines (B73, CML103, CML228, CML247, CML277, CML322, CML333, CML69, Ki11, Ki3, Ky21, M37W, Mo18w, NC350, Oh43 and Tx303), four Korean hybrids (Cheongdaok, Gangdaok, Kwangpyeongok and Pyeonganok) and one Southeast Asian genotype (DK9955). Drought stress (DS) index was evaluated with leaf rolling score at seedling stage and ASI at silking date. The leaf rolling scoring of CML228, DK9955 and Ki11 were determined 1.28, 1.85, 1.86, respectively. However, M37W, Kwangpyeongok, B73 and NC350 were determined over the 3. ASI analysis revealed that CML228, CML103, Cheongdaok, NC350, B73, CML322, Kwangpyeongok and Ki11 are represented less than 5 days under DS and less than 3 days of difference between DS and well-watered (WW), but CML69, Ki3, Pyeonganok, M37W, Mo18w and Gangdaok were represented more than 10 days under DS and more than 8 days of difference between DS and WW. Multi-Dimensional Scaling (MDS) analysis determined CML228, Ki11, and CML322 were regarded as drought tolerance cultivars. Eventually, Ki11 showed genetic similarity with Korean cultivars by QTL analysis and MDS analysis. Ki11 has a potential for development of drought tolerance maize with Korean cultivars.