DOI QR코드

DOI QR Code

지치 유래 naphthoquinone을 전처치한 생쥐에서 우울 및 불안 조절 효과

The effect of pretreated Lithospermum erythrorhizon derived-naphthoquinone on anxiety, depression in mice

  • Je, Hyun Dong (Dept. of Pharmacology, College of Pharmacy, Daegu Catholic University) ;
  • Min, Young Sil (Dept. of Pharmaceutical Science, Jungwon University)
  • 투고 : 2020.03.26
  • 심사 : 2020.07.20
  • 발행 : 2020.07.28

초록

본 연구는 불안, 불면증, 우울증 또는 삶의 질에 대하여 지치(Lithospermum erythrorhizon) 유래 naphthoquinone, 즉 shikonin의 영향을 고찰하고, 확실히 밝혀지지 않은 메카니즘을 규명하고자한다. 우리는 지치의 주요성분인 naphthoquinone이 스트레스에 의한 수면장애, 강제수영에 의한 우울, 미로에 의해 유발된 불안현상 등의 조절에 영향을 미칠 것이라고 가설을 세웠다. 수컷 쥐를 이용하여 부동 혹은 수영시간, 수면시간, open arms으로 지속시간 및 진입빈도를 측정하고 기록하였다. Naphthoquinone(10, 30 & 100mg/kg)의 투여군에서 GABAA receptor의 활성으로 일어나는 barbiturate-유도 수면을 증가시켰다. 미로에서 open arms 상태로 지속되는 시간이 증가되고, 강제수영에서 부동시간이 줄었다. 결과적으로 naphthoquinone은 불안을 완화, 수면과 항우울경향이 있고, 불안, 불면과 우울증에서 효과적인 치료효과가 있었다.

This study was undertaken to investigate the influence and related mechanisms that have yet to be clearly demonstrated of Lithospermum erythrorhizon derived-naphthoquinone (shikonin) on the anxiety, insomnia, depression in rats. We hypothesized that naphthoquinone, the primary ingredient of Lithospermum erythrorhizon, plays a role in the modulation of insomnia evoked by stress, depression evoked by forced swimming or anxiety evoked by elevated plus maze. Male ICR (Institute of Cancer Research) mice were used and the immobility or swimming time, the duration of sleep, the duration and entry frequency into open arms were measured and recorded. The administration of naphthoquinone (10, 30 and 100 mg/kg) potentiated barbiturate-induced sleep suggesting the activation of GABAA receptor. It also potentiated the time spent in open arms of the maze and decreased the immobility time in forced swimming. In conclusion, naphthoquinone has anxiolytic, hypnotic and anti-depressant properties and is a potential therapeutic for anxiety, insomnia and depression.

키워드

참고문헌

  1. B. Bandelow & S. Michaelis (2015). Epidemiology of anxiety disorders in the 21st century. Dialogues Clin Neurosci., 17(3), 327-335. https://pubmed.ncbi.nlm.nih.gov/26487813/ https://doi.org/10.31887/DCNS.2015.17.3/bbandelow
  2. J. F. Cryan & A. Holmes (2005), A. The ascent of mouse: advances in modelling human depression and anxiety. Nat Rev Drug Discov., 4(9), 775-790 DOI: 10.1038/nrd1825
  3. D. J. Taylor, K. L. Lichstein & H. H Durrence. (2003). Insomnia as a health risk factor. Behav Sleep Med., 1(4), 227-247 DOI: 10.1207/S15402010BSM0104_5
  4. J. W. Tiller. (2013), Depression and anxiety. Med J Aust., 199(S6), S28-S31. https://pubmed.ncbi.nlm.nih.gov/25370281/ https://doi.org/10.5694/mja12.10628
  5. C. Guo et al. (2019), Pharmacological properties of shikonin-A review in recent years. Pharmacol Res., 149, 104463 DOI: 10.1016/j.phrs.2019.104463
  6. X. Chen et al. (2002), Cellular pharmacology studies of shikonin derivatives. Phytother. Res., 16(3), 199-209. DOI: 10.1002/ptr.1100
  7. L. Lu et al. (2011), Shikonin extracted from medicinal chinese herbs exerts anti-inflammatory effect via proteasomeinhibition. Eur. J. Pharmacol, 658(2-3), 242-247 DOI : 10.1016/j.ejphar.2011.02.043
  8. Y. Wang et al. (2014), Shikonin suppresses tumor growth and synergizes with gemcitabine in a pancreatic cancer xenograft model: Involvement of NF-${\kappa}B$ signaling pathway. Biochem Pharmacol., 88(3), 322-333 DOI : 10.1016/j.bcp.2014.01.041
  9. W. Han et al. (2007), Shikonin circumvents cancer drug resistance by induction of a necroptotic death. Mol Cancer Ther., 6(5), 1641-1649 DOI : 10.1158/1535-7163.MCT-06-0511
  10. I. C. Chang et al. (2010). Shikonin induces apoptosis through reactive oxygen species extracellular signal-regulated kinase pathway in osteosarcoma cells. Biol Pharm Bull., 33(5), 816-824. DOI : 10.1248/bpb.33.816
  11. S. L. Handley & S. Mithani. (1984). Effects of alphaadrenoceptor agonists and antagonists in a maze-exploration model of 'fear'-motivated behaviour. Naunyn Schmiedebergs Arch Pharmacol., 327(1), 1-5. DOI : 10.1007/BF00504983
  12. R. D. Porsolt, A. Bertin, M. Jalfre (1977), Behavioral despair in mice : a primary screening test for antidepressants. Arch Int Pharmacodyn Ther., 299(2), 327-336 https://pubmed.ncbi.nlm.nih.gov/596982/
  13. S. C. Barauna, M.P. Kaster et al (2006), Antidepressant-like effect of lectin from Canavalia brasiliensis (ConBr) administered centrally in mice. Pharmaco. Biochem Behav., 85(1), 160-169 DOI : 10.1016/j.pbb.2006.07.030
  14. A. Taylor, O. Oyedeji Kogi, et al. (2016), Assessment of the analgesic, anti-inflammatory and sedative effects of the dichloromethanol extract of Schinus molle. Eur Rev Med Pharmacol Sci., 20(2), 372-380 https://pubmed.ncbi.nlm.nih.gov/26875910/
  15. M. Imaizumi & K. Onodera (2000). Animal models of anxiety. Nippon Yakurigaku Zasshi, 115, 5 https://doi.org/10.1254/fpj.115.5
  16. J. F. Cryan, A. Markou & I. Lucki. (2002), Assessing antidepressant activity in rodents: recent developments and future needs. Trends Pharmaco. Sci., 23(5), 238-245 DOI: 10.1016/s0165-6147(02)02017-5
  17. Guide for the Care and Use of Laboratory Animals. (2011). National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals, 62-147. DOI : 10.17226/12910