DOI QR코드

DOI QR Code

Performance of 3D printed plastic scintillators for gamma-ray detection

  • Kim, Dong-geon (Department of Nuclear Engineering, Hanyang University) ;
  • Lee, Sangmin (Department of Nuclear Engineering, Hanyang University) ;
  • Park, Junesic (Department of Nuclear Engineering, Hanyang University) ;
  • Son, Jaebum (Department of Nuclear Engineering, Hanyang University) ;
  • Kim, Tae Hoon (Department of Nuclear Engineering, Hanyang University) ;
  • Kim, Yong Hyun (Department of Nuclear Engineering, Hanyang University) ;
  • Pak, Kihong (Department of Nuclear Engineering, Hanyang University) ;
  • Kim, Yong Kyun (Department of Nuclear Engineering, Hanyang University)
  • Received : 2019.10.07
  • Accepted : 2020.05.27
  • Published : 2020.12.25

Abstract

Digital light processing three-dimensional (3D) printing technique is a powerful tool to rapidly manufacture plastic scintillators of almost any shape or geometric features. In our previous study, the main properties of light output and transmission were analyzed. However, a more detailed study of the other properties is required to develop 3D printed plastic scintillators with expectable and reproducible properties. The 3D printed plastic scintillator displayed an average decay time constants of 15.6 ns, intrinsic energy resolution of 13.2%, and intrinsic detection efficiency of 6.81% for 477 keV Compton electrons from the 137Cs γ-ray source. The 3D printed plastic scintillator showed a similar decay time and intrinsic detection efficiency as that of a commercial plastic scintillator BC408. Furthermore, the presented estimates for the properties showed good agreement with the analyzed data.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science and ICT (No. NRF-2016M2A2A6A03912636).

References

  1. S. Fargher, C. Steer, L. Thompson, The use of 3D printing in the development of gaseous radiation detectors, in: Advancements in Nuclear Instrumentation Measurement Methods and Their Applications, Liege, Belgium, June 19-23, 2017.
  2. 3D printing industry. https://3dprintingindustry.com/news/teen-nuclearphysicist-builds-geiger-counter-with-3d-printed-parts-53696/.
  3. G.A. Dosovitskiy, P.V. Karpyuk, P.V. Evdokimov, D.E. Kuznetsova, V.A. Mechinsky, A.E. Borisevich, A.A. Fedorov, V.I. Putlayev, A.E. Dosovitskiy, M.V. Korjik, First 3D-printed complex inorganic polycrystalline scintillator, CrystEngComm 19 (2017) 4260-4264, https://doi.org/10.1039/c7ce00541e.
  4. S. Hu, Y. Liu, Y. Zhang, Z. Xue, Z. Wang, G. Zhou, C. Lu, H. Li, S. Wang, 3D printed ceramic phosphor and the photoluminescence property under blue laser excitation, J. Eur. Ceram. Soc. 39 (2019) 2731-2738, https://doi.org/10.1016/j.jeurceramsoc.2019.03.005.
  5. Y. Mishnayot, M. Layani, I. Cooperstein, S. Magdassi, G. Ron, Three-dimensional printing of scintillating materials, Rev. Sci. Instrum. 85 (2014), 085102, https://doi.org/10.1063/1.4891703.
  6. B.D. Geelhood, J.H. Ely, R.R. Hansen, R.T. Kouzes, J.E. Schweppe, R.A. Warner, Overview of portal monitoring at border crossings, in: IEEE Nuclear Science Symposium, Medical Imaging Conference, Oregon, U.S.A, 2003. October 20-24.
  7. V.N. Bliznyuk, A.F. Seliman, A.A. Ishchenko, N.A. Derevyanko, T.A. Devol, New efficient organic scintillators derived from pyrazoline, ACS Appl. Mater. Interfaces 8 (2016) 12843-12851, https://doi.org/10.1021/acsami.6b02719.
  8. G.F. Knoll, Radiation Detection and Measurement, John Wiley & Sons, New York, 2010.
  9. M. Atac, J. Park, D. Cline, D. Chrisman, M. Petroff, E. Anderson, Scintillating fiber tracking for the SSC using visible light photon counters, Nucl. Instrum. Methods Phys. Res. A. 314 (1992) 56-62, https://doi.org/10.1016/0168-9002(92)90498-S.
  10. M.D. Petroff, M. Attac, High energy particle tracking using scintillating fibers and solid state photomultiplier, IEEE Trans. Nucl. Sci. 36 (1989) 163-164, doi: ieeexplore.ieee.org/document/34425.
  11. P. Carrasco, N. Jornet, O. Jordi, M. Lizondo, A. Latorre-Musoll, T. Eudaldo, A. Ruiz, M. Ribas, Characterization of the ExradinW1 scintillator for use in radiotherapy, Med. Phys. 42 (2015) 297-304, https://doi.org/10.1118/1.4903757.
  12. T.S.A. Underwood, B.C. Rowland, R. Ferrand, L. Vieillevigne, Application of the Exradin W1 scintillator to determine Ediode 60017 and microDiamond 60019 correction factors for relative dosimetry within small MV and FFF fields, Phys. Med. Biol. 60 (2015) 6669-6683, https://doi.org/10.1088/0031-9155/60/17/6669.
  13. S.W. Moser, W.F. Harder, C.R. Hurlbut, M.R. Kusner, Principles and practice of plastic scintillator design, Radiat. Phys. Chem. 41 (1993) 31-36, https://doi.org/10.1016/0969-806X(93)90039-W.
  14. A. Pla-Dalmau, A.D. Bross, K.L. Mellott, Low-cost extruded plastic scintillator, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 466 (2001) 482-491, https://doi.org/10.1016/S0168-9002(01)00177-2.
  15. C.H. Lee, J. Son, T.H. Kim, Y.K. Kim, Characteristics of plastic scintillators fabricated by a polymerization reaction, Nucl. Eng. Technol. 49 (2017) 592-597, https://doi.org/10.1016/j.net.2016.10.001.
  16. S. Lee, J. Son, D.G. Kim, J. Choi, Y.K. Kim, Characterization of plastic scintillator fabricated by UV LED curing machine, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 929 (2019) 23-28, https://doi.org/10.1016/j.nima.2019.03.048.
  17. J. Son, D.G. Kim, S. Lee, J. Park, Y. Kim, T. Schaarschmidt, Y.K. Kim, Improved 3D printing plastic scintillator fabrication, J. Kor. Phys. Soc. 73 (2018) 887-892, https://doi.org/10.3938/jkps.73.887.
  18. M. Hamel, C. Dehe-Pittance, R. Coulon, F. Carrel, P. Pillot, E. Barat, T. Dautremer, T. Montagu, S. Normand, Gammastic: towards a pseudo-gamma spectrometry in plastic scintillators, in: Advancements in Nuclear Instrumentation Measurement Methods and Their Applications, Marseille, France, June 23-27, 2013.
  19. A. Moiseev, E. Ferrara, R. Ojha, A. Smith, E. Hays, J.W. Mitchell, J. McEnery, J. Perkins, J. Racusin, D. Thompson, J. Buckley, R. Caputo, M. Ajello, D.H. Hartmann, Extending fermi LAT discoveries: Compton-pair production space telescope (ComPair) for MeV gamma-ray astronomy, in: International Cosmic Ray Conference, Hague, Netherlands, July 30 to August 6, 2015.
  20. K. Roemer, G. Pausch, C.M. Herbach, Y. Kong, R. Lentering, C. Plettner, J. Stein, M. Moszynski, L. Swiderski, T. Szczesniak, A technique for measuring the energy resolution of low-Z scintillators, IEEE Nucl. Sci. Symp. Conf. Rec. (2009) 6-11, https://doi.org/10.1109/NSSMIC.2009.5401909.
  21. ASIGA. https://www.asiga.com.
  22. L.M. Bollinger, G.E. Thomas, Measurement of the time dependence of scintillation intensity by a delayed-coincidence method, Rev. Sci. Instrum. 32 (1961) 1044-1050, https://doi.org/10.1063/1.1717610.
  23. Saint gobain crystal. https://www.crystals.saint-gobain.com.
  24. W. Becker, Advanced Time-Correlated Single Photon Counting Techniques, Springer, Berlin, 2005.
  25. G. Dietze, Energy calibration OF NE-213 scintillation counters BY gamma-rays, IEEE Trans. Nucl. Sci. 26 (1) (1979) 398-402, https://doi.org/10.1109/TNS.1979.4329665.
  26. D.B. Pelowitz, MCNPXTM USER'S MANUAL 2.7.0 Version, Los Alamos Natl. Lab., 2011, pp. 1-645. LA-CP-05-0369.
  27. T.M. Undagoitia, F.V. Feilitzsch, L. Oberauer, W. Potzel, A. Ulrich, J. Winter, M. Wurm, Fluorescence decay-time constants in organic liquid scintillators, Rev. Sci. Instrum. 80 (2009), 043301, https://doi.org/10.1063/1.3112609.
  28. G. Dietze, H. Klein, Gamma-calibration of NE 213 scintillation counters, Nucl. Instrum. Methods 193 (1982) 549-556, https://doi.org/10.1016/0029-554X(82)90249-X.
  29. P. Dorenbos, J.T.D. de Haas, C.W.V. van Eijk, Non-proportionality in the scintillation response and the energy resolution obtainable with scintillation crystals, IEEE Trans. Nucl. Sci. 42 (1995) 2190-2202, https://doi.org/10.1109/23.489415.
  30. J.B. Birks, The Theory and Practice of Scintillation Counting, Pergamon Press, 1964.
  31. D.G. Kim, J. Park, J. Son, S. Lee, S.J. Seon, J.Y. Jeong, Y.K. Kim, Light output analysis of 3D printed plastic scintillator, in: Transaction of the Korean Nuclear Society Autumn Meeting, Yeosu, Korea, October 25-26, 2018.
  32. L. Swiderski, R. Marcinkowski, M. Moszynski, W. Czarnacki, M. Szawlowski, T. Szczesniak, G. Pausch, C. Plettner, K. Roemer, Electron response of some low-Z scintillators in wide energy range, J. Instrum. 7 (2012) P06011, https://doi.org/10.1088/1748-0221/7/06/P06011.
  33. A. Nassalski, M. Moszynski, A. Syntfeld-Kazuch, L. Swiderski, T. Szczesniak, Non-proportionality of organic scintillators and BGO, IEEE Trans. Nucl. Sci. 55 (3) (2008) 1069-1072, https://doi.org/10.1109/TNS.2008.2012282.
  34. NIST. https://www.nist.gov.

Cited by

  1. Optimization of Plastic Scintillator for Detection of Gamma-Rays: Simulation and Experimental Study vol.9, pp.9, 2020, https://doi.org/10.3390/chemosensors9090239
  2. Wireless Backpack System for Detection of Radioactive Cesium on Contaminated Soil Using Portable Plastic Scintillator with Efficient Readout Device vol.10, pp.22, 2021, https://doi.org/10.3390/electronics10222833
  3. Evaluation of advanced methods and materials for construction of scintillation detector light guides vol.179, 2020, https://doi.org/10.1016/j.apradiso.2021.109979