DOI QR코드

DOI QR Code

광양만 주둥치(Leiognathus nuchalis)의 서식처 이동에 의한 먹이원 변동 파악을 위한 안정동위원소 분석기법 적용

Isotopic Evidence for Ontogenetic Shift in Food Resource Utilization during the Migration of the Slipmouth Leiognathus nuchalis in Gwangyang Bay, Korea

  • 최보형 (전남대학교 수산과학연구소) ;
  • 조현빈 (전남대학교 수산과학연구소) ;
  • 박기연 (전남대학교 수산과학연구소) ;
  • 곽인실 (전남대학교 수산과학연구소)
  • Choi, Bohyung (Fisheries Science Institute, Chonnam National University) ;
  • Jo, Hyunbin (Fisheries Science Institute, Chonnam National University) ;
  • Park, Kiyun (Fisheries Science Institute, Chonnam National University) ;
  • Kwak, Ihn-Sil (Fisheries Science Institute, Chonnam National University)
  • 투고 : 2020.04.28
  • 심사 : 2020.06.12
  • 발행 : 2020.06.30

초록

섬진강 하구와 광양만에 서식하는 주둥치의 서식처 및 섭식 특성을 비교하기 위해 탄소 및 질소 안정동위원소 분석을 실시하였다. 주둥치의 탄소안정동위원소비(δ13C) 값은 염분이 30 psu보다 낮은 섬진강 하구에서 채집된 개체에서 광양만에 비해 낮은 값이 나타났으며, 이는 섬진강 하구에서 채집된 주둥치가 해당 정점에서 섭식활동을 하고 있음을 의미한다. 이와 대조적으로, 채집된 주둥치의 질소안정동위원소비 (δ15N) 값은 정점 간 큰 차이를 나타내지 않아, 이들이 각 서식처에서 유사한 영양위치를 점유하고 있다는 것을 나타내었다. 주둥치는 만 전체에 널리 분포하고 있어 광염성 어류의 특성을 잘 대변하는 것을 보였는데, 상대적으로 소형개체들이 하구역에서 채집되는 반면 대형 개체들이 광양만에 분포하여 크기에 따른 서식처 분리를 나타내었다. 결론적으로 본 연구에서 나타난 주둥치의 δ13C 값의 서식처 간 차이와 δ15N 값의 일관성은 섬진강 하구에서 유어기에 주로 동물플랑크톤을 섭이하는 반면, 광양만에서 성어기에 저서무척추동물을 섭이하는 육식성 섭식 특성과 함께 이동 중 서식환경에 따른 먹이자원의 이용에서의 변이를 잘 나타내어 주었다. 본 연구결과는 또한 광염성 어류의 서식처 특성과 먹이 이용 패턴을 파악하기 위한 연구에 안정동위원소 분석기법의 유용성을 잘 보여주었다.

We investigated carbon and nitrogen isotope ratios (δ13C and δ15N) of the slipmouth Leiognathus nuchalis to reveal the effects of body size, feeding strategy and spatial distribution on the food resource utilization during the migration in the Seomjin estuary and Gwangyang Bay. The δ13C values of L. nuchalis caught in the Seomjin estuary where the salinity is lower than 30 psu were much lower than those in the deep-bay area of Gwangyang Bay. Such a spatial heterogeneity in δ13C values of the L. nuchalis clearly indicates active feeding within the estuarine habitat. In contrast, the δ15N values of L. nuchalis showed a consistency among sites, indicating that this species occupies identical trophic level across the whole area. The slipmouth distributed throughout the bay area, reflecting its euryhaline characteristics. However, the distribution pattern appeared to be separated according to body size into smaller individuals in the low-saline estuary and larger ones in the deep bay. Overall results support the plastic feeding strategy of the slipmouth from zooplanktonic (estuarine habitat) to epibenthic (deep-bay habitat) feeder during the migration between estuarine to deep-bay habitats.

키워드

참고문헌

  1. Caputi, S.S., G. Careddu. E. Calizza, F. Fiorentino, D. Maccapan, L. Rossi and M.L. Costantini. 2020. Changing isotopic food webs of two economically important fish in Mediterranean coastal lakes with different trophic status. Appl. Sci., 12: 2756. https://doi.org/10.3390/app10082756.
  2. Cha, S.S. and K.J. Park. 2001. Food organisms and feeding selectivity of postlarvae of slimy (Leiognathus nuchalis) in Kwangyang Bay, Korea. J. Korean Fish. Soc., 34: 666-671.
  3. Choi, B. and K.H. Shin. 2018. Applications and prospects of stable isotope in aquatic ecology and environmental study. Korean J. Ecol. Environ., 51: 96-104. https://doi.org/10.11614/KSL.2018.51.1.096.
  4. Choi, B., S.Y. Ha, J.S. Lee, Y. Chikaraishi, N. Ohkouchi and K.H. Shin. 2017. Trophic interaction among organisms in a seagrass meadow ecosystem as revearled by bulk ${\delta}^{13}C$ and amino acid ${\delta}^{15}N$ analyses. Limnol. Oceanogr., 62: 1426-1435. https://doi.org/10.1002/lno.10508.
  5. Herzka, S.Z. 2005. Assessing connectivity of estuarine fishes based on stable isotope ratio analysis. Estuar. Coast. Shelf Sci., 64: 58-69. https://doi.org/10.1016/j.ecss.2005.02.006.
  6. Huh, S.H. and S.N. Kwak. 1997. Feeding habits of Leiognathus nuchalis in eelgrass(Zostera marina) bed in Kwangyang Bay. Korean J. Ichthyol., 9: 221-227.
  7. Jeong, J.M., J.M. Park, S.H. Huh, H.J. Kim and G.W. Baeck. 2015. Diet composition of spot nape ponyfish, Leiognathus nuchalis in the coastal waters of Gadeok-do. Korean J. Ichthyol., 27: 33-38.
  8. Jones, J.I. and S. Waldron. 2003. Combined stable isotope and gut contents analysis of food webs in plant-dominated, shallow lakes. Freshw. Biol., 48: 1396-1407. https://doi.org/10.1046/j.1365-2427.2003.01095.x.
  9. Kang, S., B. Choi, Y. Han and K.H. Shin. 2016. Ecological importance of benthic microalgae in the intertidal mud flat of Yeongheung Island; Application of stable isotope analysis (SIA). Korean J. Ecol. Environ., 49: 80-88. https://doi.org/10.11614/KSL.2016.49.2.080.
  10. Kang, S., J.H. Kim, J.S. Ryu and K.H. Shin. 2020. Dual carbon isotope (${\delta}^{13}C$ and ${\Delta}^{14}C$) characterization of particulate organic carbon in the Geum and Seomjin estuaries, South Korea. Mar. Pollut. Bull., 150: 110719. https://doi.org/10.1016/j.marpolbul.2019.110719.
  11. Kim, D.K., H. Jo, I. Han and I.S. Kwaw. 2019. Explicit characterization of spatial heterogeneity based on water quality, sediment contamination, and ichthyofauna in a riverine-to-coastal zone. https://doi.org/10.3390/ijerph16030409.
  12. Kim, H., S. Kumar and K.H. Shin. 2015. Applicability of stable C and N isotope analysis in inferring the geographical origin and authentication of commercial fish (Mackerel, Yellow Croaker and Pollock). Food Chem., 172: 523-527. https://doi.org/10.1016/j.foodchem.2014.09.058.
  13. Kwak, S.N., S.H. Huh and H.W. Kim. 2012. Change in fish assemblage inhabiting around Dae Island in Gwangyang Bay, Korea. J. Korean Soc. Mar. Environ. Saf., 18: 175-184. https://doi.org/10.7837/kosomes.2012.18.3.175.
  14. Lugendo, B.R., I. Nagelkerken, G. Vander Velde and Y.D. Mgaya. 2006. The importance of mangroves, mud and sand flats, and seagrass beds as feeding areas for juvenile fishes in Chwaka Bay, Zanzibar: gut content and stable isotope analyses. J. Fish. Biol., 69: 1639-1661. https://doi.org/10.1111/j.1095-8649.2006.01231.x.
  15. Meng, J., Z. Yu, Q. Yao, T.S. Bianchi, A. Paytan, B. Zhao, H. Pan and P. Yao. 2015. Distribution, mixing behavior, and transformation of dissolved inorganic phosphorus and suspended particulate phosphorus along a salinity gradient in the Changjiang Estuary. Mar. Chem., 168: 124-134. https://doi.org/10.1016/j.marchem.2014.09.016.
  16. Suzuki, K.W., A. Kasai, T. Isoda, K. Nakayama and M. Tanaka. 2008. Distinctive stable isotope ratios in important zooplankton species in relation to estuarine salinity gradients: Potential tracer of fish migration. Estuar. Coast. Shelf Sci., 78: 541-550. https://doi.org/10.1016/j.ecss.2008.01.014.
  17. Vander zanden, M.J. and J.B. Rasmussen. 1999. Primary consumer ${\delta}^{13}C$ and ${\delta}^{15}N$ and the trophic position of aquatic consumers. Ecology, 80: 1395-1404. https://doi.org/10.1890/0012-9658(1999)080[1395:PCCANA]2.0.CO;2
  18. Yoon, J.D., J.H. Kim, S.H. Park, E. Kim and M.H. Jang. 2017. Impact of estuary barrage construction on fish assemblages in the lower part of a river and the role of fishways as a passage. Ocean Sci. J., 52: 147-164. https://doi.org/10.1007/s12601-017-0015-6.