DOI QR코드

DOI QR Code

명태(Gadus chalcogrammus)의 수온별 부화 및 초기 성장

Effect of Water Temperature on the Egg Hatch and Early Growth of Walleye Pollock (Gadus chalcogrammus)

  • 최진 (국립수산과학원 양식관리과) ;
  • 한경식 (국립수산과학원 동해수산연구소) ;
  • 이기욱 (국립수산과학원 동해수산연구소) ;
  • 변순규 (국립수산과학원 동해수산연구소) ;
  • 임현정 (국립수산과학원 동해수산연구소) ;
  • 김희성 (경상대학교 해양식품생명의학과)
  • Choi, Jin (Aquaculture Management Division, National Institute of Fisheries Science) ;
  • Han, Gyeong Sik (Aquaculture Industry Research Division, East Sea Fisheries Research Institute, National Institute of Fisheries Science) ;
  • Lee, Ki Wook (Aquaculture Industry Research Division, East Sea Fisheries Research Institute, National Institute of Fisheries Science) ;
  • Byun, Soon-Gyu (Aquaculture Industry Research Division, East Sea Fisheries Research Institute, National Institute of Fisheries Science) ;
  • Lim, Hyun Jeong (Aquaculture Industry Research Division, East Sea Fisheries Research Institute, National Institute of Fisheries Science) ;
  • Kim, Hee Sung (Department of Marine Seafood and Aquaculture Science, Gyeongsang National University)
  • 투고 : 2020.03.24
  • 심사 : 2020.04.29
  • 발행 : 2020.06.30

초록

수온은 양식 대상어의 종자생산에 영향을 미치는 중요한 환경 요인이다. 본 연구는 최근 급격한 자원 감소를 보이고 있는 한해성 어종인 명태의 안정적인 종자생산을 위한 기초자료로 활용하기 위해 수온이 명태의 부화 및 초기 자어 성장에 미치는 영향을 조사하였다. 수정란의 생존율은 5℃가 8℃와 11℃에 비하여 높게 나타났으며, 부화율은 8℃에서 가장 우수하게 나타났다. 그러나 첫 부화, 50% 부화 및 완전 부화까지의 소요 시간은 11℃가 5℃와 8℃에 비하여 빠르게 나타났다. 12주간의 사육기간 동안 자어의 생존율은 5℃가 8℃와 11℃에 비하여 높게 나타났으나, 성장은 11℃가 5℃와 8℃에 비하여 높게 나타났다.

This study aimed to investigate the effects of different water temperature (5, 8 and 11℃) on egg hatch and larval growth of walleye pollock Gadus chalcogrammus to improve rearing techniques for this species. Survival of eggs maintained at 5℃ was higher than that of eggs maintained at 8℃ and 11℃. The greatest hatching rate was obtained for larvae maintained at 8℃. However, time to first, 50% and 100% hatch of eggs maintained at 11℃ was shorter than at 5℃ and 8℃. A higher survival was observed in larvae reared at 5℃ compared to 8℃ and 11℃ and the greatest growth was observed in larvae reared at 11℃ compared to 5℃ and 8℃ during the feeding trial. This study demonstrated the importance of water temperature, as it affects culture performance of eggs and larval pollock. The results from this study provides valuable information for further development of pollock aquaculture.

키워드

참고문헌

  1. Bang, M., S. Kang, S. Kim and C.J. Jang. 2018. Change in the biological characteristics of walleye pollock related to demographic changes in the East sea during the late 20th century. Mar. Coast. Fish., 10: 91-99. https://doi.org/10.1002/mcf2.10004.
  2. Blood, D.M., A.C. Matarese and M.M. Yoklavich. 1994. Embryonic development of walleye pollock, Theragra chalcogramma, from Shelikof Strait, Gulf of Alaska. Fish. Bull., 92: 207-222.
  3. Choi, J., S. Byun, H.J. Lim and H.S. Kim. 2020a. Determination of optimum dietary protein level for juvenile walleye pollock, Gadus chalcogrammus Pallas 1811. Aquac. Rep., 17: 100291. https://doi.org/10.1016/j.aqrep.2020.100291.
  4. Choi, J., K.W. Lee, G.S. Han, S. Byun, H.J. Lim and H.S. Kim. 2020b. Dietary inclusion effect of krill meal and various fish meal sources on growth performance, feed utilization, and plasma chemistry of grower walleye pollock (Gadus chalcogrammus, Pallas 1811). Aquac. Rep., 17: 100331. https://doi.org/10.1016/j.aqrep.2020.100331.
  5. Duncan, D.B. 1955. Multiple range and multiple F tests. Biometrics, 11: 1-42. https://doi.org/10.2307/3001478.
  6. Eckmann, R. and M. Pusch. 1989. The influence of temperature on growth of young coregonids (Coregonus lavaretus L.) in a large pre-alpine lake. Rapp. P.-v. R eun. Cons. Int. Explor. Mer., 191: 201-208.
  7. Food and Agriculture Organization of the United Nations (FAO) FishStatJ, 2019. FAOFishStatJ database: 2019 dataset. http://www.fao.org/fishery/statistics/software/fishstatj/en.Accessed July 2019.
  8. Fox, C.J., A.J. Geffen, R. Blyth and R.D.M. Nash. 2003. Temperature-dependent development rates of plaice (Pleuronectes platessa L.) eggs from the Irish Sea. J. Plankton. Res., 25: 1319-1329. https://doi.org/10.1093/plankt/fbg099.
  9. Geffen, A.J., C.J. Fox and R.D.M. Nash. 2006. Temperature-dependent development rates of cod Gadus morhua eggs. J. Fish. Biol., 69; 1060-1080. https://doi.org/10.1111/j.1095-8649.2006.01181.x.
  10. Herzig, A. and H. Winkler. 1986. The influence of temperature on the embryonic development of three cyprinid fishes, Aramis brama, Chalcalburnus chalcoides mento and Vimba vimba. J. Fish. Biol., 28: 171-181. https://doi.org/10.1111/j.1095-8649.1986.tb05155.x.
  11. Hiatt, T., M. Dalton, R. Felthoven, B. Fissel, B. Garber-Yonts, A. Haynie, S. Kasperski, D. Lew, C. Package, J. Sepez and C. Seung. 2010. Economic status of the ground fish Fisheries off Alaska, 2009. In: Stock assessment and fishery evaluation report for the ground fish fisheries of the Gulf of Alaska and Bering Sea/Aleutian Islands Area, 254p [Available from North Pacific Fishery Management Council, 605W. 4th Ave., Anchorage, AK 99510].
  12. Hurst, T.P. 2007. Causes and consequences of winter mortality in fishes. J. Fish. Biol., 71: 315-345. https://doi.org/10.1111/j.1095-8649.2007.01596.x.
  13. Jobling, M. 1994. Biotic factors and growth performance. In: M. Jobling (eds.), Fish Bioenergetics, Chapman & Hall, London, pp. 155-201.
  14. Kamler, E. 1992. Gonad formation. In: Kamler, E. (ed.), Early life history of fish. An energetics approach. Chapman & Hall, London, pp. 3-30.
  15. Kamler, E. 2002. Ontogeny of yolk-feeding fish: an ecological perspective. Reviews Fish Biol. Fish., 12: 79-103. https://doi.org/10.1023/A:1022603204337.
  16. Keinanen, M., C. Tigerstedt, P. Kalax and P.J. Vuorinen. 2003. Fertilization and embryonic development of whitefish (Coregonus lavaretus lavaretus) in acidic ow-ionic-strength water with aluminium. Ecotoxicol. Environ. Saf., 55: 314-329. https://doi.org/10.1016/S0147-6513(02)00128-8.
  17. Kim, K.I., S. Byun, H.W. Kang, M. Nam, J. Choi, H. Yoo and C. Lee. 2017. Disease monitoring of Alaska pollock (Gadus chalcogrammus) based on growth stage. Korean J. Ichthyol., 29: 62-68.
  18. Koenker, B.L., B.J. Laurel, L.A. Copeman and L. Ciannelli. 2018. Effects of temperature and food availability on the survival and growth of larval Arctic cod (Boreogadus saida) and walleye pollock (Gadus chalcogrammus). ICES J. Mar. Sci., 75: 2386-2402. https://doi.org/10.1093/icesjms/fsy062.
  19. Korean Statistical Information Service (KOSIS). 2019. Retrieved for http://kosis.kr/statisticsList/statisticsListIndex.do?menuId=M_01_01&vwcd=MT_ZTITLE&parmTabId=M_01_01&statId=1970004&themaId=F#SelectStatsBoxDiv on Mar 30, 2020.
  20. Lee, J.Y., W.K. Kim and Y.J. Chang. 1997. Influence of water temperature and salinity on egg development of flatfish, Limanda herzensteini. J. Aquacult., 10: 357-362.
  21. Lee, J.Y., C.S. Lee, W.K. Kim, S.U. Park and B.H. Min. 2007. Effects of water temperature on egg development, hatching and larval growth rearing of the Pacific cod Gadus macrocephalus. J. Aquaculture, 20: 260-264.
  22. Luczynski, M. 1991. Temperature requirements for growth and survival of larval vendace, Coregonus albula (L.). J. Fish. Biol., 38: 29-35. https://doi.org/10.1111/j.1095-8649.1991.tb03088.x.
  23. Martell, D.J., J.D. Kieffer and E.A. Trippel. 2005. Effects of temperature during early life history on embryonic and larval development and growth in haddock. J. Fish Biol., 66: 1558-1575. https://doi.org/10.1111/j.0022-1112.2005.00699.x.
  24. Matousek, J., V. Stejskal, M. Prokesova and J. Kouril. 2017. The effect of water temperature on growth parameters of intensively reared juvenile peled Coregonus peled. Aquac. Res., 48: 1877-1884. https://doi.org/10.1111/are.13025.
  25. Park, J.C., W.S. Hong, J.Y. Seo, W.S. Nam and O.N. Kwon. 2018. Enriched rotifer feeding efficiency in the walleye pollock Theragra chalcogramma depends on larval fatty acid composition. Korean J. Fish. Aquat. Sci., 51: 549-555. https://doi.org/10.5657/KFAS.2018.0549.
  26. Rana, K.J. 1990. Influence of incubation temperature on Oreochromis niloticus (L.) egg and fry: I. Gross embryology, temperature tolerance and rates of embryonic development. Aquaculture, 87: 165-181. https://doi.org/10.1016/0044-8486(90)90273-P.
  27. Regnier, T., F.M. Gibb and P.J. Wright. 2018. Temperature effects on egg development and larval condition in the lesser sandeel, Ammodytes marinus. J. Sea Res., 134: 34-41. https://doi.org/10.1016/j.seares.2018.01.003.
  28. Reist, J.D., F.J. Wrona, T.D. Prowse, M. Power, J.B. Dempson, R.J. Beamish, J.R. King, T.J. Carmichael and C.D. Sawatzky. 2006. General effects of climate change on Arctic fishes and fish populations. Ambio, 35: 370-380. https://doi.org/10.1579/0044-7447(2006)35[370:GEOCCO]2.0.CO;2.
  29. Salze, G., D.R. Tocher, W.J. Roy and D.A. Robertson. 2005. Egg quality determinants in cod (Gadus morhua L.): egg performance and lipids in eggs from farmed and wild broodstock. Aquac. Res., 36: 1488-1499. https://doi.org/10.1111/j.1365-2109.2005.01367.x.
  30. Stejskal, V., J. Matousek, R. Sebesta, M. Prokesova, T. Vanina and P. Podhorec. 2018. Prevalence of deformities in intensively reared peled Coregonus peled and comparative morphometry with pond-reared fish. J. Fish Dis., 41: 375-381. https://doi.org/10.1111/jfd.12695.
  31. Tanaka, H., T. Nakagawa, T. Yokota, M. Chimura, Y. Yamashita and T. Funamoto. 2019. Effects of spawning temperature on the reproductive characteristics of walleye pollock Gadus chalcogrammus. Fish. Sci., 85: 901-911. https://doi.org/10.1007/s12562-019-01343-x
  32. Wolnicki, J., R. Kaminski and J. Sikorska. 2017. Combined effects of water temperature and food availability period on the growth and survival of tench (Tinca tinca) larvae. Aquac. Res., 48: 3809-3816. https://doi.org/10.1111/are.13207.
  33. Yoo, H.K., S.G. Byun, J. Yamamoto and Y. Sakurai. 2015. The effect of warmer water temperature of walleye pollock (Gadus chalcogrammus) larvae. J. Korean Soc. Mar. Environ. Saf., 4: 339-346. https://doi.org/10.7837/kosomes.2015.21.4.339.
  34. Yoon, S.J., D.H. Kim, H.G. Hwang, G.C. Song and Y.C. Kim. 2007. Effects of water temperature, stocking density and feeding frequency on survival and growth in the oblong rockfish Sebastes oblongus larvae. Korean J. Ichthyol., 19: 1-7.