References
- M. S. Diamond et al. (2011). Type I interferon is selectively required by dendritic cells for immune rejection of tumors. The Journal of experimental medicine, 208(10), 1989-2003. DOI : 10.1084/jem.20101158
-
M. B. Fuertes et al. (2011). Host type I IFN signals are required for antitumor
$CD8^+$ T cell responses through$CD8{alpha}^+$ dendritic cells. The Journal of experimental medicine, 208(10), 2005-2016. DOI : 10.1084/jem.20101159 - C. G. Figdor, I. J. M. de Vries, W. J. Lesterhuis & C. J. M. Melief. (2004). Dendritic cell immunotherapy: mapping the way. Nature medicine, 10(5), 475-480. DOI : 10.1038/nm1039
- D. H. Schuurhuis et al. (2009). In situ expression of tumor antigens by messenger RNA-electroporated dendritic cells in lymph nodes of melanoma patients. Cancer research, 69(7), 2927-2934. DOI : 10.1158/0008-5472.CAN-08-3920
- E. R. Steenblock, S. H. Wrzesinski, R. A. Flavell, T. M. Fahmy. (2009). Antigen presentation on artificial acellular substrates: modular systems for flexible, adaptable immunotherapy. Expert opinion on biological therapy, 9(4), 451-464. https://doi.org/10.1517/14712590902849216
- S. C. Balmert, S. R. Little. (2012). Biomimetic Delivery with Micro- and Nanoparticles. Advanced materials, 24(28), 3757-3778. DOI : 10.1002/adma.201200224
- G. J. Randolph, V. Angeli & M. A. Swartz. (2005). Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nature reviews. Immunology, 5(8), 617-628. DOI : 10.1038/nri1670
- J. E. Smith-Garvin, G. A. Koretzky & M. S. Jordan. (2009). T Cell Activation, Annual review of immunology, 27, 591-619. DOI : 10.1146/annurev.immunol.021908.132706
- I. Mellman, G. Coukos & G. Dranoff. (2011). Cancer immunotherapy comes of age, Nature, 480(7378), 480-489. DOI : 10.1038/nature10673
-
M. F. Mescher et al. (2006) Signals required for programming effector and memory development by
$CD8^+$ T cells. Immunological reviews, 211(1), 81-92. DOI : 10.1111/j.0105-2896.2006.00382.x -
P. a Antony et al. (2005).
$CD8^+$ T Cell Immunity Against a Tumor/Self-Antigen Is Augmented by$CD4^+$ T Helper Cells and Hindered by Naturally Occurring T Regulatory Cells. Journal of immunology, 174(5), 2591-2601. DOI : 10.4049/jimmunol.174.5.2591 - M. L. Disis, H. Bernhard & E. M. Jaffee. (2009). Use of tumour-responsive T cells as cancer treatment. Lancet, 373(9664), 673-683. DOI : 10.1016/S0140-6736(09)60404-9
- S. D. Conner & S. L. Schmid. (2003). Regulated portals of entry into the cell. Nature, 422(6927), 37-44. DOI : 10.1038/nature01451
- S. E. a Gratton et al. (2008). Age-related top-down suppression deficit in the early stages of cortical visual memory processing. Proceedings of the National Academy of Sciences of the United States of America, 105(35), 11613-11618. DOI : 10.1073/pnas.0806074105
- J. a Champion, A. Walker & S. Mitragotri. (2008). Role of Particle Size in Phagocytosis of Polymeric Microspheres. Pharmaceutical research, 25(8), 1815-1821. DOI : 10.1007/s11095-008-9562-y
- S. S. Yu et al. (2012). The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. International journal of nanomedicine, 7, 799-813. DOI : 10.2147/IJN.S36111
- M. F. Mescher. (1992). Surface contact requirements for activation of cytotoxic T lymphocytes. Journal of immunology, 149(7), 2402-2405. DOI : 10.4049/jimmunol.149.7.2402
- E. R. Steenblock & T. M. Fahmy. (2008). A Comprehensive Platform for Ex Vivo T-cell Expansion Based on Biodegradable Polymeric Artificial Antigen-presenting Cells. Molecular Therapy, 16(4), 765-772. DOI : 10.1038/mt.2008.11
- Z. Zhang et al. (2011). Induction of anti-tumor cytotoxic T cell responses through PLGA-nanoparticle mediated antigen delivery. Biomaterials, 32(14), 3666-3678. DOI : 10.1016/j.biomaterials.2011.01.067
- K. Y. Dane et al. (2011) Nano-sized drug-loaded micelles deliver payload to lymph node immune cells and prolong allograft survival. Journal of controlled release, 156(2), 154-160. DOI : 10.1016/j.jconrel.2011.08.009
- A. Stano, E. A. Scott, K. Y. Dane, M. a Swartz & J. a Hubbell. (2013). Tunable T cell immunity towards a protein antigen using polymersomes vs. solid-core nanoparticles. Biomaterials, 34(17), 4339-4346. DOI : 10.1016/j.biomaterials.2013.02.024
- J. J. Moon, H. Suh, A. V Li, C. F. Ockenhouse, A. Yadava & D. J. Irvine. (2012). Enhancing humoral responses to a malaria antigen with nanoparticle vaccines that expand Tfh cells and promote germinal center induction. Proceedings of the National Academy of Sciences of the United States of America, 109(4), 1080-1085. DOI : 10.1073/pnas.1112648109
- J. a Champion, Y. K. Katare & S. Mitragotri. (2007). Particle shape: A new design parameter for micro- and nanoscale drug delivery carriers. Journal of controlled release, 121(1-2), 3-9. DOI : 10.1016/j.jconrel.2007.03.022
- N. Daum, C. Tscheka, A. Neumeyer & M. Schneider. (2012). Novel approaches for drug delivery systems in nanomedicine: effects of particle design and shape, Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology, 4(1), 52-65. DOI : 10.1002/wnan.165
- G. Sharma, D. T. Valenta, Y. Altman, S. Harvey, H. Xie, S. Mitragotri & J. W. Smith. (2010). Polymer particle shape independently influences binding and internalization by macrophages. Journal of controlled release, 147(3), 408-412. DOI : 10.1016/j.jconrel.2010.07.116
- J. a Champion & S. Mitragotri. (2009). Shape Induced Inhibition of Phagocytosis of Polymer Particles. Pharmaceutical research, 26(1), 244-249. DOI : 10.1007/s11095-008-9626-z
- S. Barua et al. (2013). Particle shape enhances specificity of antibody-displaying nanoparticles. Proceedings of the National Academy of Sciences, 110(9), 3270-3275. DOI : 10.1073/pnas.1216893110
- J. A. Champion & S. Mitragotri. (2006). Role of target geometry in phagocytos. Proceedings of the National Academy of Sciences of the United States of America, 103(13), 4930-4934. DOI : 10.1073/pnas.0600997103
- L. Florez et al. (2012). How Shape Influences Uptake: Interactions of Anisotropic Polymer Nanoparticles and Human Mesenchymal Stem Cells. Small, 8(14), 2222-2230. DOI : 10.1002/smll.201102002
- S. Muro et al. (2008). Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM-1-targeted carrier. Molecular therapy, 16(8), 1450-1458. DOI : 10.1038/mt.2008.127
- Y. Geng et al. (2007). Shape effects of filaments versus spherical particles in flow and drug delivery, Nature nanotechnology, 2(4), 249-255. DOI : 10.1038/nnano.2007.70
- J. B. Huppa et al. (2010). TCR-peptide-MHC interactions in situ show accelerated kinetics and increased affinity. Nature, 463, 963-967. DOI : 10.1038/nature08746.
- J. Xie et al. (2012). Photocrosslinkable pMHC monomers stain T cells specifically and cause ligand-bound TCRs to be 'preferentially' transported to the cSMAC. Nature immunology, 13(7), 674-680. DOI : 10.1038/ni.2344
- L. L. Kiessling, J. E. Gestwicki, L. E. Strong, (2006). Synthetic multivalent ligands as probes of signal transduction. Angew Chem Int Ed Engl, 45(15), 2348-2368. DOI : 10.1002/anie.200502794
- A. Dolganiuc. (2011). Role of lipid rafts in liver health and disease. World journal of gastroenterology, 17(20), 2520-2535. DOI : 10.3748/wjg.v17.i20.2520
- B. M. Discher et al. (1999). Polymersomes: tough vesicles made from diblock copolymers. Science, 284(5417), 1143-1146. DOI : 10.1126/science.284.5417.1143
- C. E. Ashley et al. (2011). The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nature materials, 10(5), 389-397. DOI : 10.1038/nmat2992
- M. Porotto, F. Yi, A. Moscona & D. A. LaVan. (2011). Synthetic Protocells Interact with Viral Nanomachinery and Inactivate Pathogenic Human Virus. PLoS ONE, 6(3), e16874. DOI : 10.1371/journal.pone.0016874
- D. a. Hammer et al. (2008). Leuko-polymersomes. Faraday Discussions, 139, 129-141. DOI : 10.1039/B717821B
- W. R. Algar et al. (2011). The Controlled Display of Biomolecules on Nanoparticles: A Challenge Suited to Bioorthogonal Chemistry. Bioconjugate chemistry, 22(5), 825-858. DOI : 10.1021/bc200065z
- J. V Kim, J.-B. Latouche, I. Riviere, M. Sadelain. (2004). The ABCs of artificial antigen presentation. Nature biotechnology, 22(4), 403-410. DOI : 10.1038/nbt955
- B. Prakken et al. (2000). Artificial antigen-presenting cells as a tool to exploit the immune 'synapse'. Nature medicine, 6(12), 1406-1410. DOI : 10.1038/82231
- E. R. Steenblock, T. Fadel, M. Labowsky, J. S. Pober & T. M. Fahmy. (2011). An Artificial Antigen-presenting Cell with Paracrine Delivery of IL-2 Impacts the Magnitude and Direction of the T Cell Response. The Journal of biological chemistry, 286(40), 34883-34892. DOI : 10.1074/jbc.M111.276329
- B. Kwong, S. A. Gai, J. Elkhader, K. D. Wittrup & D. J. Irvine. (2013). Localized Immunotherapy via Liposome-Anchored Anti-CD137 + IL-2 Prevents Lethal Toxicity and Elicits Local and Systemic Antitumor Immunity, Cancer research, 73(5), 1-12. DOI : 10.1158/0008-5472.CAN-12-3343
- J. J. Moon, B. Huang & D. J. Irvine. (2012). Engineering Nano- and Microparticles to Tune Immunity. Advanced materials, 24(28), 3724-3746. DOI : 10.1002/adma.201200446