DOI QR코드

DOI QR Code

The effects of properties and interactions of surface molecules in antigen presenting cells on T cell activation

인공 항원제시세포의 표면 분자의 특성 및 상호작용이 T 세포 활성화에 미치는 영향

  • Min, Youngsil (Department of Pharmaceutical Science, Jungwon University) ;
  • Kang, Yoon Joong (Department of Biomedical Science, Jungwon University)
  • 민영실 (중원대학교 제약공학과) ;
  • 강윤중 (중원대학교 의생명과학과)
  • Received : 2020.05.01
  • Accepted : 2020.06.20
  • Published : 2020.06.28

Abstract

Efficient production of antigen specific cytotoxic T cells is critical for appropriate adoptive immune response. In vitro culture and expansion of human T lymphocyte clones are very sophisticated and subtle procedure in immune cell therapy and hard to control. Therefore, many groups devoted their efforts to manipulate artificial antigen presenting cells (aAPCs) that can induce T cell activation and clonal expansion. To mimicking of natural antigen-presenting cells, aAPCs encompass basic signal molecules required for T cell activation: MHC:antigen complexes, co-stimulatory molecules and soluble immune modulating molecules. Orchestrated organization of these molecules is important for efficient T cell activation. Here, we discuss how those molecules have been incorporated in several aAPC models, but also how physical properties od aAPC are important for interaction with T cells.

인체 적응 면역 반응을 일으키는데 중요한 항원 특이적 T 세포를 활용한 면역 세포 치료에서 T 세포를 체외에서 배양하고 클론 확장시키는 과정은 매우 섬세하고 복잡하여 조절하기가 쉽지 않아 T 세포의 활성화와 클론 확장을 유도하면서도 조절 및 취급이 용이한 인공 항원제시세포 개발의 필요성이 대두되고 있다. 인공 항원제시세포는 인체의 항원제시세포의 세포 표면 분자와 작용을 모방하게 되는데, 기본적인 신호 분자인 MHC-항원 복합체, 공동 자극 분자, 그리고 용해성 면역 조절 분자를 필수적으로 발현하여야 한다. 또한 T 세포가 항원과 접촉할 때, 이들 분자들이 잘 조직화되어 작용하는 것이 효과적인 T 세포 활성화에 중요하다. 본 논문에서는 여러 인공 항원제시세포 제작 방법과 세포 표면 분자들의 결합 방법과 물리적인 특성이 T 세포와의 상호작용에 중요함을 고찰하였으며, 효과적인 T 세포 활성화를 유도하며 면역세포치료에 적용 가능한 인공항원제세세포의 제작 방법을 살펴보았다.

Keywords

References

  1. M. S. Diamond et al. (2011). Type I interferon is selectively required by dendritic cells for immune rejection of tumors. The Journal of experimental medicine, 208(10), 1989-2003. DOI : 10.1084/jem.20101158
  2. M. B. Fuertes et al. (2011). Host type I IFN signals are required for antitumor $CD8^+$ T cell responses through $CD8{alpha}^+$ dendritic cells. The Journal of experimental medicine, 208(10), 2005-2016. DOI : 10.1084/jem.20101159
  3. C. G. Figdor, I. J. M. de Vries, W. J. Lesterhuis & C. J. M. Melief. (2004). Dendritic cell immunotherapy: mapping the way. Nature medicine, 10(5), 475-480. DOI : 10.1038/nm1039
  4. D. H. Schuurhuis et al. (2009). In situ expression of tumor antigens by messenger RNA-electroporated dendritic cells in lymph nodes of melanoma patients. Cancer research, 69(7), 2927-2934. DOI : 10.1158/0008-5472.CAN-08-3920
  5. E. R. Steenblock, S. H. Wrzesinski, R. A. Flavell, T. M. Fahmy. (2009). Antigen presentation on artificial acellular substrates: modular systems for flexible, adaptable immunotherapy. Expert opinion on biological therapy, 9(4), 451-464. https://doi.org/10.1517/14712590902849216
  6. S. C. Balmert, S. R. Little. (2012). Biomimetic Delivery with Micro- and Nanoparticles. Advanced materials, 24(28), 3757-3778. DOI : 10.1002/adma.201200224
  7. G. J. Randolph, V. Angeli & M. A. Swartz. (2005). Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nature reviews. Immunology, 5(8), 617-628. DOI : 10.1038/nri1670
  8. J. E. Smith-Garvin, G. A. Koretzky & M. S. Jordan. (2009). T Cell Activation, Annual review of immunology, 27, 591-619. DOI : 10.1146/annurev.immunol.021908.132706
  9. I. Mellman, G. Coukos & G. Dranoff. (2011). Cancer immunotherapy comes of age, Nature, 480(7378), 480-489. DOI : 10.1038/nature10673
  10. M. F. Mescher et al. (2006) Signals required for programming effector and memory development by $CD8^+$ T cells. Immunological reviews, 211(1), 81-92. DOI : 10.1111/j.0105-2896.2006.00382.x
  11. P. a Antony et al. (2005). $CD8^+$ T Cell Immunity Against a Tumor/Self-Antigen Is Augmented by $CD4^+$ T Helper Cells and Hindered by Naturally Occurring T Regulatory Cells. Journal of immunology, 174(5), 2591-2601. DOI : 10.4049/jimmunol.174.5.2591
  12. M. L. Disis, H. Bernhard & E. M. Jaffee. (2009). Use of tumour-responsive T cells as cancer treatment. Lancet, 373(9664), 673-683. DOI : 10.1016/S0140-6736(09)60404-9
  13. S. D. Conner & S. L. Schmid. (2003). Regulated portals of entry into the cell. Nature, 422(6927), 37-44. DOI : 10.1038/nature01451
  14. S. E. a Gratton et al. (2008). Age-related top-down suppression deficit in the early stages of cortical visual memory processing. Proceedings of the National Academy of Sciences of the United States of America, 105(35), 11613-11618. DOI : 10.1073/pnas.0806074105
  15. J. a Champion, A. Walker & S. Mitragotri. (2008). Role of Particle Size in Phagocytosis of Polymeric Microspheres. Pharmaceutical research, 25(8), 1815-1821. DOI : 10.1007/s11095-008-9562-y
  16. S. S. Yu et al. (2012). The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. International journal of nanomedicine, 7, 799-813. DOI : 10.2147/IJN.S36111
  17. M. F. Mescher. (1992). Surface contact requirements for activation of cytotoxic T lymphocytes. Journal of immunology, 149(7), 2402-2405. DOI : 10.4049/jimmunol.149.7.2402
  18. E. R. Steenblock & T. M. Fahmy. (2008). A Comprehensive Platform for Ex Vivo T-cell Expansion Based on Biodegradable Polymeric Artificial Antigen-presenting Cells. Molecular Therapy, 16(4), 765-772. DOI : 10.1038/mt.2008.11
  19. Z. Zhang et al. (2011). Induction of anti-tumor cytotoxic T cell responses through PLGA-nanoparticle mediated antigen delivery. Biomaterials, 32(14), 3666-3678. DOI : 10.1016/j.biomaterials.2011.01.067
  20. K. Y. Dane et al. (2011) Nano-sized drug-loaded micelles deliver payload to lymph node immune cells and prolong allograft survival. Journal of controlled release, 156(2), 154-160. DOI : 10.1016/j.jconrel.2011.08.009
  21. A. Stano, E. A. Scott, K. Y. Dane, M. a Swartz & J. a Hubbell. (2013). Tunable T cell immunity towards a protein antigen using polymersomes vs. solid-core nanoparticles. Biomaterials, 34(17), 4339-4346. DOI : 10.1016/j.biomaterials.2013.02.024
  22. J. J. Moon, H. Suh, A. V Li, C. F. Ockenhouse, A. Yadava & D. J. Irvine. (2012). Enhancing humoral responses to a malaria antigen with nanoparticle vaccines that expand Tfh cells and promote germinal center induction. Proceedings of the National Academy of Sciences of the United States of America, 109(4), 1080-1085. DOI : 10.1073/pnas.1112648109
  23. J. a Champion, Y. K. Katare & S. Mitragotri. (2007). Particle shape: A new design parameter for micro- and nanoscale drug delivery carriers. Journal of controlled release, 121(1-2), 3-9. DOI : 10.1016/j.jconrel.2007.03.022
  24. N. Daum, C. Tscheka, A. Neumeyer & M. Schneider. (2012). Novel approaches for drug delivery systems in nanomedicine: effects of particle design and shape, Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology, 4(1), 52-65. DOI : 10.1002/wnan.165
  25. G. Sharma, D. T. Valenta, Y. Altman, S. Harvey, H. Xie, S. Mitragotri & J. W. Smith. (2010). Polymer particle shape independently influences binding and internalization by macrophages. Journal of controlled release, 147(3), 408-412. DOI : 10.1016/j.jconrel.2010.07.116
  26. J. a Champion & S. Mitragotri. (2009). Shape Induced Inhibition of Phagocytosis of Polymer Particles. Pharmaceutical research, 26(1), 244-249. DOI : 10.1007/s11095-008-9626-z
  27. S. Barua et al. (2013). Particle shape enhances specificity of antibody-displaying nanoparticles. Proceedings of the National Academy of Sciences, 110(9), 3270-3275. DOI : 10.1073/pnas.1216893110
  28. J. A. Champion & S. Mitragotri. (2006). Role of target geometry in phagocytos. Proceedings of the National Academy of Sciences of the United States of America, 103(13), 4930-4934. DOI : 10.1073/pnas.0600997103
  29. L. Florez et al. (2012). How Shape Influences Uptake: Interactions of Anisotropic Polymer Nanoparticles and Human Mesenchymal Stem Cells. Small, 8(14), 2222-2230. DOI : 10.1002/smll.201102002
  30. S. Muro et al. (2008). Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM-1-targeted carrier. Molecular therapy, 16(8), 1450-1458. DOI : 10.1038/mt.2008.127
  31. Y. Geng et al. (2007). Shape effects of filaments versus spherical particles in flow and drug delivery, Nature nanotechnology, 2(4), 249-255. DOI : 10.1038/nnano.2007.70
  32. J. B. Huppa et al. (2010). TCR-peptide-MHC interactions in situ show accelerated kinetics and increased affinity. Nature, 463, 963-967. DOI : 10.1038/nature08746.
  33. J. Xie et al. (2012). Photocrosslinkable pMHC monomers stain T cells specifically and cause ligand-bound TCRs to be 'preferentially' transported to the cSMAC. Nature immunology, 13(7), 674-680. DOI : 10.1038/ni.2344
  34. L. L. Kiessling, J. E. Gestwicki, L. E. Strong, (2006). Synthetic multivalent ligands as probes of signal transduction. Angew Chem Int Ed Engl, 45(15), 2348-2368. DOI : 10.1002/anie.200502794
  35. A. Dolganiuc. (2011). Role of lipid rafts in liver health and disease. World journal of gastroenterology, 17(20), 2520-2535. DOI : 10.3748/wjg.v17.i20.2520
  36. B. M. Discher et al. (1999). Polymersomes: tough vesicles made from diblock copolymers. Science, 284(5417), 1143-1146. DOI : 10.1126/science.284.5417.1143
  37. C. E. Ashley et al. (2011). The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nature materials, 10(5), 389-397. DOI : 10.1038/nmat2992
  38. M. Porotto, F. Yi, A. Moscona & D. A. LaVan. (2011). Synthetic Protocells Interact with Viral Nanomachinery and Inactivate Pathogenic Human Virus. PLoS ONE, 6(3), e16874. DOI : 10.1371/journal.pone.0016874
  39. D. a. Hammer et al. (2008). Leuko-polymersomes. Faraday Discussions, 139, 129-141. DOI : 10.1039/B717821B
  40. W. R. Algar et al. (2011). The Controlled Display of Biomolecules on Nanoparticles: A Challenge Suited to Bioorthogonal Chemistry. Bioconjugate chemistry, 22(5), 825-858. DOI : 10.1021/bc200065z
  41. J. V Kim, J.-B. Latouche, I. Riviere, M. Sadelain. (2004). The ABCs of artificial antigen presentation. Nature biotechnology, 22(4), 403-410. DOI : 10.1038/nbt955
  42. B. Prakken et al. (2000). Artificial antigen-presenting cells as a tool to exploit the immune 'synapse'. Nature medicine, 6(12), 1406-1410. DOI : 10.1038/82231
  43. E. R. Steenblock, T. Fadel, M. Labowsky, J. S. Pober & T. M. Fahmy. (2011). An Artificial Antigen-presenting Cell with Paracrine Delivery of IL-2 Impacts the Magnitude and Direction of the T Cell Response. The Journal of biological chemistry, 286(40), 34883-34892. DOI : 10.1074/jbc.M111.276329
  44. B. Kwong, S. A. Gai, J. Elkhader, K. D. Wittrup & D. J. Irvine. (2013). Localized Immunotherapy via Liposome-Anchored Anti-CD137 + IL-2 Prevents Lethal Toxicity and Elicits Local and Systemic Antitumor Immunity, Cancer research, 73(5), 1-12. DOI : 10.1158/0008-5472.CAN-12-3343
  45. J. J. Moon, B. Huang & D. J. Irvine. (2012). Engineering Nano- and Microparticles to Tune Immunity. Advanced materials, 24(28), 3724-3746. DOI : 10.1002/adma.201200446