DOI QR코드

DOI QR Code

Design of Micro-Magnetic Energy Harvest Power Management Circuit for Emergency Lighting LED Driving in Underground Facility for Public Utilities

지하 공동구 비상조명 LED 구동용 초소형 자기 에너지 하베스트 전력관리 회로 설계

  • 심혜령 (경상대학교 전기시스템공학과) ;
  • 이경호 (한국전기연구원) ;
  • 김종현 (한국전기연구원) ;
  • 한석붕 (경상대학교 전기시스템공학과)
  • Received : 2020.05.06
  • Accepted : 2020.06.15
  • Published : 2020.06.30

Abstract

In this paper, a power management circuit was designed to drive the emergency lighting LED in the underground facility for public utilities using magnetic energy harvest. The magnetic energy harvest consists of a harvest elements and power management circuits. The proposed circuit was made of a rectifier, a battery charging circuit, and an LED driving circuit. In normal times, the battery is charged with the harvested power, and in the event of an emergency, the energy stored in the battery is used to drive the LED. As a result of the measurement, it took two minutes to charge the 47 mF capacitor. This is the amount of power that can drive an LED for emergency lighting for about three and a half minutes. Through this, it was confirmed that the power management circuit for magnetic energy harvest proposed in this paper can be used as an emergency lighting LED-driven power device in an underground facility for public utilities where it is difficult to draw separate power.

본 논문에서는 자기 에너지 하베스트를 이용하여 지하 공동구의 비상조명 LED를 구동하는 전력관리 회로를 설계하였다. 자기 에너지 하베스트는 하베스터 소자와 전력관리 회로로 구성되어 진다. 제안하는 회로는 정류기, 배터리 충전회로와 LED 구동회로로 만들어졌다. 평상시에는 만들어진 전력으로 배터리를 충전하고, 비상시에는 배터리에 충전된 에너지를 이용하여 LED를 구동한다. 측정 결과, 47 mF 커패시터를 충전하는 데 2분이 걸렸다. 이것은 약 3분 30초 동안 비상조명용 LED를 구동할 수 있는 전력량이다. 이를 통해, 본 논문에서 제안하는 자기 에너지 하베스트용 전력관리 회로를 이용하여 별도의 전원을 끌어오기 어려운 지하 공동구의 비상조명 LED 구동용 전원장치로 사용할 수 있는 것을 확인하였다.

Keywords

References

  1. I. Seok, K. Lee, and S. Han, "Design of SECE energy harvest interface circuit with high voltage comparator for smart sensor," J. of the Korea Institute of Electronic Communication Sciences, vol. 14, no. 3, June 2019, pp. 529-536. https://doi.org/10.13067/JKIECS.2019.14.3.529
  2. M. A. Weimer, T. S. Paing, and R. A. Zane, "Remote area wind energy harvesting for low-power autonomous sensors," Power Electronics Specialists Conf., Jeju, South Korea, 2006, pp. 1-5.
  3. Y. K. Tan and S. K. Panda, "Self-Autonomous Wireless Sensor Nodes With Wind Energy Harvesting for Remote Sensing of Wind-Driven Wildfire Spread," Trans. Instrumentation and Measurement, vol. 60, issue 4, Apr. 2011, pp. 1367-1377. https://doi.org/10.1109/TIM.2010.2101311
  4. V. Raghunathan, A. Kansal, J. Hsu, J. Friedman, and M. Srivastava, "Design considerations for solar energy harvesting wireless embedded systems," Fourth Int. Symp. on Information Processing in Sensor Networks, Boise, ID, USA, 2005, pp. 457-462.
  5. S. Bader and B. Oelmann, "Enabling battery-less wireless sensor operation using solar energy harvesting at locations with limited solar radiation," Fourth Int. Conf. on Sensor Technologies and Applications, Venice, Italy, July 2010, pp. 602-608.
  6. M. Jeong, C. Moon, Y. Chang, S. Lee, and S. Lee, "A study on Design of Generation Capacity for Offshore Wind Power Plant : The Case of Chonnam Province in Korea," J. of the Korea Institute of Electronic Communication Sciences, vol. 13, no. 3, June 2018, pp. 547-554. https://doi.org/10.13067/JKIECS.2018.13.3.547
  7. J. Woo, J. Lee, T. Seo, M. Han, and M. Seo, "A Study on standardized instrumentation for solar power plants operated remote control," J. of the Korea Institute of Electronic Communication Sciences, vol. 10, no. 6, June 2015, pp. 707-712. https://doi.org/10.13067/JKIECS.2015.10.6.707
  8. G. K. Ottman, H. F. Hofmann, A. C. Bhatt, and G. A. Lesieutre, "Adaptive piezoelectric energy harvesting circuit for wireless remote power supply," IEEE Trans. Power Electronics, vol. 17, no. 5, Nov. 2002, pp. 669-676. https://doi.org/10.1109/TPEL.2002.802194
  9. O. Yasar, H. Ulusan, O. Zorlu, O. Sardan-Sukas, and H. Kulah, "Optimization of AA-Battery Sized Electromagnetic Energy Harvesters: Reducing the Resonance Frequency Using a Non-Magnetic Inertial Mass," IEEE Sensors J., vol. 18, issue 11, Mar. 2018, pp. 4509-4516. https://doi.org/10.1109/JSEN.2018.2819194
  10. H. Zangl, T. Bretterklieber, and G. Brasseur, "A Feasibility Study on Autonomous Online Condition Monitoring of High-Voltage Overhead Power Lines," IEEE Trans. Instrumentation and Measurement, vol. 58, issue 5, Feb. 2009, pp. 1789-1796. https://doi.org/10.1109/TIM.2009.2012943
  11. K. Tashiro, H. Wakiwaka, S. Inoue, and Y. Uchiyama, "Energy Harvesting of Magnetic Power-Line Noise," IEEE Trans. Magnetics, vol. 47, issue 10, Sept. 2011, pp. 4441-4444. https://doi.org/10.1109/TMAG.2011.2158190
  12. V. Gupta, A. Kandhalu, and R. Rajkumar, "Energy harvesting from electromagnetic energy radiating from AC power lines," HotEmNets '10: Proc. of the 6th Workshop on Hot Topics in Embedded Networked Sensors, 2010, pp. 1-6.
  13. N. Roscoe and M. Judd, "Harvesting Energy from Magnetic Fields to Power Condition Monitoring Sensors," IEEE Sensors J., vol. 13 issue 6, June 2013, pp. 2263-2270.
  14. G. Itoh, K. Tashiro, H. Wakiwaka, T. Kumada, and K. Okishima, "Prototype of magnetic energy harvesting device as a 3.3 V battery," 11th Int. Symp. on Linear Drives for Industry Applications, Osaka, Japan, 2017.