DOI QR코드

DOI QR Code

Comminution Characteristics for Recycling Waste Glass Bottle

폐유리병 재활용을 위한 파분쇄 특성 연구

  • Lee, Han Sol (Resources Recycling, University of Science and Technology) ;
  • Lee, Hoon (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources)
  • 이한솔 (과학기술연합대학원대학교 자원순환공학과) ;
  • 이훈 (한국지질자원연구원)
  • Received : 2020.02.11
  • Accepted : 2020.04.14
  • Published : 2020.04.30

Abstract

To enhance the recycling rate of wasted glass bottles toward recycled aggregates, the study would decide optimal comminution equipment based on the particle size distribution, aspect ratio and equipment energy analysis. The impact, compress and abrasion is type of generated force by comminution. So, hammer crusher, shredder, roll crusher and ball mill have been selected because they have characteristic which is each type of force. As a result of the particle size analysis of each product, only the shredder product satisfied concrete and asphalt aggregate quality standard condition. Also, as a result of aspect ratio analysis using Imaging software program (Image J, National institute of health), most of size fraction is confirmed under 1.6 value. It was confirmed that the product has low dangerousness and satisfying to shpage index. Also, the particle reduction ratio against input energy of shredder product was the most high. Therefore, we can decide that the optimal equipment which applicable for comminuting waste glass bottle in certain particle size under 10mm is shredder. The result of study will make contribution to increasing energy efficiency of comminution processing and competitiveness of product.

폐유리병을 순환 잔골재로 활용하여 재활용률을 향상시키기 위해 다양한 파분쇄 산물의 입도, 입형, 에너지 분석을 통해서 재활용 공정에 적용할 수 있는 최적의 장비 선정을 위한 파분쇄 특성 연구를 수행하였다. 파분쇄시 발생하는 힘의 종류인 충격, 압축, 마모가 특징적으로 나타는 장비인 해머크러셔, 슈레더 및 롤크러셔, 볼밀 총 4가지 장비를 선정하여 실험을 진행하였다. 각 장비의 파분쇄 산물의 입도분석을 수행한 결과 슈레더에서 발생한 산물만이 콘크리트용, 아크팔트용 순환 잔골재의 품질 기준을 만족시키는 것으로 확인되었다. 화상소프트웨어(Image J, National institute of health)를 이용한 입형 분석 결과 대부분 입자의 입형이 1.6 이하의 값을 가지고 있어 순환 잔골재로 재활용하기에 위험성이 적고 편장석 비율 규정 조건 또한 충족하는 것으로 판단되었다. 또한 각 장비에서 소모되는 에너지를 측정해본 결과 에너지 대비 입자의 감소 비율이 슈레더의 산물이 가장 높은 것으로 확인되었다. 따라서 10mm 이하의 일정 입도구간에서 폐유리병 파분쇄시 적용될 수 있는 최적의 장비는 슈레더임을 판단할 수 있었다. 본 연구를 통해서 폐유리병 파분쇄 공정의 에너지 효율 및 제품의 경쟁력 향상에 큰 기여를 할 수 있을 것이라고 사료된다.

Keywords

References

  1. Ko, I., Park, J. H., Park, J. H., et al., 2018 : Feasibility study on technology status level and location conditions of urban mining industry in abandoned mine area, Journal of Korean Society for Rock Mechanics and Rock Engineering, 55(6), pp.553-563.
  2. Bangs, C., Meskers, C., Van Kerckhoven, T., 2016 : Trends in electronic products - the canary in the urban mine, Proceedings of the Electronic Goes Green, 7-9 September 2016, Printed in Berlin.
  3. Ministry of Environment, Waste Recycling Statistics, https://www.data.go.kr/dataset/3043420/fileData.do, January 09, 2020.
  4. Lim, D. K., Kang, E. T., 2009 : Porous materials from waste bottle glasses by hydrothermal treatment, Journal of the Korean Ceramic Society, 46(3), pp.275-281. https://doi.org/10.4191/KCERS.2009.46.3.275
  5. Bu, M. S., Kim, J. S., 2006 : Disposal behaviors of college students in recycling resources, Journal of the Korean Home Economics Association, 44(4), pp.145-157.
  6. Jani, Y., Hogland, W., Augustsson, A., 2014 : Specification the metal content of waste glass from an old glass landfill, Linnaeus Eco-Tech, 24-26 November 2014, Printed in Sweden.
  7. Khatib, J., Negim, E. M., Sohl, H. S., et al., 2012 : Glass powder utilisation in concrete production, European Journal of Applied Sciences, 4(4), pp.173-176.
  8. Mear, F., Yot, P., Cambon, M., et al., 2006 : The characterization of waste cathode-ray tube glass, Waste Management, 26(12), pp.1468-1476. https://doi.org/10.1016/j.wasman.2005.11.017
  9. Job, S., 2013 : Recycling glass fibre reinforced composites-history and progress, Reinforced Plastics, 57(5), pp.19-23. https://doi.org/10.1016/S0034-3617(13)70151-6
  10. Shayan, A., Xu, A., 2004 : Value-added utilisation of waste glass in concrete, Cement and Concrete Research, 34(1), pp.81-89. https://doi.org/10.1016/S0008-8846(03)00251-5
  11. Johnson, C. D., 1974 : Waste glass as coarse aggregate for concrete, Journal of Testing and Evaluation, 2(5), pp.344-350. https://doi.org/10.1520/JTE10117J
  12. Lee, H. G., Oh, H. S., Sim, J. S., et al., 2013 : An experimental study on the multi-deterioration resistances of concrete containing waste-glass sludge, Journal of Korean Society of Hazard Mitigation, 13(2), pp.67-74. https://doi.org/10.9798/KOSHAM.2013.13.2.067
  13. Lee, Y. I., Eom, H. H., Kim, Y. W., et al., 2013 : Effect of additive composition on flexural strength of cullet-loess tile bodies, Journal of the Korea Ceramic Society, 50(6), pp.416-422. https://doi.org/10.4191/kcers.2013.50.6.416
  14. Kim, J. K., Lim, I. D., 2013 : The development of environmental friendly glass tile design for coal refuse, Journal of Korea Design Knowledge, 25, pp.367-375. https://doi.org/10.17246/jkdk.2013..25.035
  15. Yang, W., Lee, S. H., Shim, J. W., 2006 : An experimental study on the physical properties of recycled glass tile as the firing conditions, Journal of the Architectural Institute of Korea Structure & Construction, 26(1), pp.473-476.
  16. Kim, Y. K., Hung, Y. G., Song, J. B., et al., 2005 : Fabrication and physical properties of tiles recycled waste glass, Journal of the Korean Ceramic Society, 42(3), pp.193-197. https://doi.org/10.4191/KCERS.2005.42.3.193
  17. Sung, C., Kim, T., 2011 : Engineering properties of permeable polymer concrete for pavement using powdered waste glass and recycled coarse aggregate, Journal of the Korean Society of Agricultural Engineers, 53(6), pp.59-65. https://doi.org/10.5389/KSAE.2011.53.6.059
  18. Shao, Y., Lefort, T., Moras, S., et al., 2000 : Studies on concrete containing ground waste glass, Cement and Concrete Research, 30(1), pp.91-100. https://doi.org/10.1016/S0008-8846(99)00213-6
  19. Topcu, I. B., Canbaz, M., 2004 : Properties of concrete containing waste glass, Cement and Concrete Research, 34(2), pp.267-274. https://doi.org/10.1016/j.cemconres.2003.07.003
  20. Shayan, A., 2002 : Value-added utilisation of waste glass in concrete, IABSE Symposium Report, 86(6), pp.12-21.
  21. Kim, S. S., Lee, J. B., Nam, B. R., et al., 2009 : Performance evluation of artificial lightweight aggregate mortar manufactured with waste glass, Journal of the Korea Concrete Institute, 21(2), pp.147-152. https://doi.org/10.4334/JKCI.2009.21.2.147
  22. Park, S. J., Lee, S. G., Choi, H. B., 2014 : Application of powdered waste glasses and calcium carbonate for improving the properties of artificial lightweight aggregate made of recycled basalt powder sludge, Journal of the Korea Institute of Building Construction, 14(3), pp.230-236. https://doi.org/10.5345/JKIBC.2014.14.3.230
  23. Ministry of Land, Infrastructure and Transport, Recycled Aggregate Quality Standard, https://www.law.go.kr/LSW/admRulInfoP.do?admRulSeq=2100000107568, January 09, 2020.
  24. National Competency Standards, Comminution Process Operation, https://www.ncs.go.kr/unity/th03/ncsSearchMain.do, January 09, 2020.
  25. Austin, L. G., Klimpel, R. R., Luckie, P. T., 1984 : Process engineering of size reduction: ball milling, Society of Mining Engineers, New York.