References
- N. Argac and V. De Filippis, Actions of generalized derivations on multilinear polynomials in prime rings, Algebra Colloq. 18 (2011), Special Issue no. 1, 955-964. https://doi.org/10.1142/S1005386711000836
- A. Asma, N. Rehman, and A. Shakir, On Lie ideals with derivations as homomorphisms and anti-homomorphisms, Acta Math. Hungar. 101 (2003), no. 1-2, 79-82. https://doi.org/10.1023/B:AMHU.0000003893.61349.98
- K. I. Beidar, W. S.Martindale, III, and A. V. Mikhalev, Rings with generalized identities, Monographs and Textbooks in Pure and Applied Mathematics, 196, Marcel Dekker, Inc., New York, 1996.
- H. E. Bell and L.-C. Kappe, Rings in which derivations satisfy certain algebraic conditions, Acta Math. Hungar. 53 (1989), no. 3-4, 339-346. https://doi.org/10.1007/BF01953371
- M. Bresar, On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J. 33 (1991), no. 1, 89-93. https://doi.org/10.1017/S0017089500008077
- M. Bresar, Centralizing mappings and derivations in prime rings, J. Algebra 156 (1993), no. 2, 385-394. https://doi.org/10.1006/jabr.1993.1080
- L. Carini, V. De Filippis, and G. Scudo, Identities with product of generalized derivations of prime rings, Algebra Colloq. 20 (2013), no. 4, 711-720. https://doi.org/10.1142/S1005386713000680
- C.-L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103 (1988), no. 3, 723-728. https://doi.org/10.2307/2046841
- B. Dhara, Generalized derivations acting on multilinear polynomials in prime rings, Czechoslovak Math. J. 68(143) (2018), no. 1, 95-119. https://doi.org/10.21136/CMJ.2017.0352-16
- B. Dhara, S. Sahebi, and V. Rahmani, Generalized derivations as a generalization of Jordan homomorphisms acting on Lie ideals and right ideals, Math. Slovaca 65 (2015), no. 5, 963-974. https://doi.org/10.1515/ms-2015-0065
- V. De Filippis and G. Scudo, Generalized derivations which extend the concept of Jordan homomorphism, Publ. Math. Debrecen 86 (2015), no. 1-2, 187-212. https://doi.org/10.5486/PMD.2015.7070
- V. De Filippis and O. M. Di Vincenzo, Vanishing derivations and centralizers of generalized derivations on multilinear polynomials, Comm. Algebra 40 (2012), no. 6, 1918-1932. https://doi.org/10.1080/00927872.2011.553859
- N. J. Divinsky, On commuting automorphisms of rings, Trans. Roy. Soc. Canada Sect. III 49 (1955), 19-22.
- T. S. Erickson, W. S. Martindale, 3rd, and J. M. Osborn, Prime nonassociative algebras, Pacific J. Math. 60 (1975), no. 1, 49-63. http://projecteuclid.org/euclid.pjm/1102868622 https://doi.org/10.2140/pjm.1975.60.49
- C. Faith and Y. Utumi, On a new proof of Litoff's theorem, Acta Math. Acad. Sci. Hungar. 14 (1963), 369-371. https://doi.org/10.1007/BF01895723
- I. N. Herstein, Jordan homomorphisms, Trans. Amer. Math. Soc. 81 (1956), 331-341. https://doi.org/10.2307/1992920
- B. Hvala, Generalized derivations in rings, Comm. Algebra 26 (1998), no. 4, 1147-1166. https://doi.org/10.1080/00927879808826190
- N. Jacobson, Structure of rings, American Mathematical Society Colloquium Publications, Vol. 37. Revised edition, American Mathematical Society, Providence, RI, 1964.
- V. K. Kharchenko, Differential identities of prime rings, Algebra i Logika 17 (1978), no. 2, 220-238, 242-243.
- T.-K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica 20 (1992), no. 1, 27-38.
- T.-K. Lee, Generalized derivations of left faithful rings, Comm. Algebra 27 (1999), no. 8, 4057-4073. https://doi.org/10.1080/00927879908826682
- T.-K. Lee and W.-K. Shiue, Derivations cocentralizing polynomials, Taiwanese J. Math. 2 (1998), no. 4, 457-467. https://doi.org/10.11650/twjm/1500407017
- T.-K. Lee and W.-K. Shiue, Identities with generalized derivations, Comm. Algebra 29 (2001), no. 10, 4437-4450. https://doi.org/10.1081/AGB-100106767
- U. Leron, Nil and power-central polynomials in rings, Trans. Amer. Math. Soc. 202 (1975), 97-103. https://doi.org/10.2307/1997300
- W. S. Martindale, III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576-584. https://doi.org/10.1016/0021-8693(69)90029-5
- E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100. https://doi.org/10.2307/2032686
- M. F. Smiley, Jordan homomorphisms onto prime rings, Trans. Amer. Math. Soc. 84 (1957), 426-429. https://doi.org/10.2307/1992823
- S. K. Tiwari, Generalized derivations with multilinear polynomials in prime rings, Comm. Algebra 46 (2018), no. 12, 5356-5372. https://doi.org/10.1080/00927872.2018.1468899
- S. K. Tiwari, R. K. Sharma, and B. Dhara, Identities related to generalized derivation on ideal in prime rings, Beitr. Algebra Geom. 57 (2016), no. 4, 809-821. https://doi.org/10.1007/s13366-015-0262-6
- S. K. Tiwari, R. K. Sharma, and B. Dhara, Multiplicative (generalized)-derivation in semiprime rings, Beitr. Algebra Geom. 58 (2017), no. 1, 211-225. https://doi.org/10.1007/s13366-015-0279-x