Acknowledgement
The authors wish to thank the referee for his/her comments which helped to improve the present version of this article. The authors also wish to thank Rachid Tribak for Example 2.3.
References
- H. Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466-488. https://doi.org/10.2307/1993568
- V. Camillo, Coherence for polynomial rings, J. Algebra 132 (1990), no. 1, 72-76. https://doi.org/10.1016/0021-8693(90)90252-J
- S. U. Chase, Direct products of modules, Trans. Amer. Math. Soc. 97 (1960), 457-473. https://doi.org/10.2307/1993382
- R. R. Colby and E. A. Rutter, Jr., Generalizations of QF - 3 algebras, Trans. Amer. Math. Soc. 153 (1971), 371-386. https://doi.org/10.2307/1995563
-
A. Harmanci, D. Keskin, and P. F. Smith, On
${\oplus}$ -supplemented modules, Acta Math. Hungar. 83 (1999), no. 1-2, 161-169. https://doi.org/10.1023/A:1006627906283 - D. V. Huynh, Rings in which no nonzero complement is small, Preprint.
-
D. Keskin, P. F. Smith, and W. Xue, Rings whose modules are
${\oplus}$ -supplemented, J. Algebra 218 (1999), no. 2, 470-487. https://doi.org/10.1006/jabr.1998.7830 - T. Y. Lam, Lectures on modules and rings, Graduate Texts in Mathematics, 189, Springer-Verlag, New York, 1999. https://doi.org/10.1007/978-1-4612-0525-8
- G. Lee, S. T. Rizvi, and C. S. Roman, Dual Rickart modules, Comm. Algebra 39 (2011), no. 11, 4036-4058. https://doi.org/10.1080/00927872.2010.515639
- W. Li, J. Chen, and F. Kourki, On strongly C2 modules and D2 modules, J. Algebra Appl. 12 (2013), no. 7, 1350029, 14 pp. https://doi.org/10.1142/S0219498813500291
- S. H. Mohamed and B. J. Muller, Continuous and discrete modules, London Mathematical Society Lecture Note Series, 147, Cambridge University Press, Cambridge, 1990.
- W. K. Nicholson, Semiregular modules and rings, Canadian J. Math. 28 (1976), no. 5, 1105-1120. https://doi.org/10.4153/CJM-1976-109-2
- K. Oshiro, Semiperfect modules and quasisemiperfect modules, Osaka Math. J. 20 (1983), no. 2, 337-372. http://projecteuclid.org/euclid.ojm/1200776022
- G. Puninski and P. Rothmaler, When every finitely generated flat module is projective, J. Algebra 277 (2004), no. 2, 542-558. https://doi.org/10.1016/j.jalgebra.2003.10.027
- T. C. Quynh, M. T. Kosan, and L. V. Thuyet, On (semi)regular morphisms, Comm. Algebra 41 (2013), no. 8, 2933-2947. https://doi.org/10.1080/00927872.2012.667855
- T. C. Quynh, M. T. Kosan, and L. V. Thuyet, On Automorphism-Invariant Rings with Chain Conditions, Vietnam J. Math. 48 (2020), no. 1, 23-29. https://doi.org/10.1007/s10013-019-00336-8
- S. T. Rizvi and C. S. Roman, On direct sums of Baer modules, J. Algebra 321 (2009), no. 2, 682-696. https://doi.org/10.1016/j.jalgebra.2008.10.002
- S. Singh and A. K. Srivastava, Dual automorphism-invariant modules, J. Algebra 371 (2012), 262-275. https://doi.org/10.1016/j.jalgebra.2012.08.012
- L. W. Small, Semihereditary rings, Bull. Amer. Math. Soc. 73 (1967), 656-658. https://doi.org/10.1090/S0002-9904-1967-11812-3
- Y. Utumi, On continuous regular rings, Canad. Math. Bull. 4 (1961), 63-69. https://doi.org/10.4153/CMB-1961-011-6
- R. B. Warfield, Jr., Decomposability of finitely presented modules, Proc. Amer. Math. Soc. 25 (1970), 167-172. https://doi.org/10.2307/2036549
- R. Wisbauer, Foundations of Module and Ring Theory, revised and translated from the 1988 German edition, Algebra, Logic and Applications, 3, Gordon and Breach Science Publishers, Philadelphia, PA, 1991.