• Title/Summary/Keyword: extended centroid

Search Result 26, Processing Time 0.022 seconds

ON THE CENTROID OF THE PRIME GAMMA RINGS

  • Ozturk, Mehmet-Ali;Jun, Y.B.
    • Communications of the Korean Mathematical Society
    • /
    • v.15 no.3
    • /
    • pp.469-479
    • /
    • 2000
  • We define and study the extended centroid of a prime $\Gamma$-ring.

  • PDF

REGULARITY OF THE GENERALIZED CENTROID OF SEMI-PRIME GAMMA RINGS

  • Ali Ozturk, Mehmet ;Jun, Young-Bae
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.2
    • /
    • pp.233-242
    • /
    • 2004
  • The aim of this note is to study properties of the generalized centroid of the semi-prime gamma rings. Main results are the following theorems: (1) Let M be a semi-prime $\Gamma$-ring and Q a quotient $\Gamma$-ring of M. If W is a non-zero submodule of the right (left) M-module Q, then $W\Gamma$W $\neq 0. Furthermore Q is a semi-prime $\Gamma$-ring. (2) Let M be a semi-prime $\Gamma$-ring and $C_{{Gamma}$ the generalized centroid of M. Then $C_{\Gamma}$ is a regular $\Gamma$-ring. (3) Let M be a semi-prime $\Gamma$-ring and $C_{\gamma}$ the extended centroid of M. If $C_{\gamma}$ is a $\Gamma$-field, then the $\Gamma$-ring M is a prime $\Gamma$-ring.

A NOTE ON GENERALIZED DERIVATIONS AS A JORDAN HOMOMORPHISMS

  • Chandrasekhar, Arusha;Tiwari, Shailesh Kumar
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.3
    • /
    • pp.709-737
    • /
    • 2020
  • Let R be a prime ring of characteristic different from 2. Suppose that F, G, H and T are generalized derivations of R. Let U be the Utumi quotient ring of R and C be the center of U, called the extended centroid of R and let f(x1, …, xn) be a non central multilinear polynomial over C. If F(f(r1, …, rn))G(f(r1, …, rn)) - f(r1, …, rn)T(f(r1, …, rn)) = H(f(r1, …, rn)2) for all r1, …, rn ∈ R, then we describe all possible forms of F, G, H and T.

Design of Data-centroid Radial Basis Function Neural Network with Extended Polynomial Type and Its Optimization (데이터 중심 다항식 확장형 RBF 신경회로망의 설계 및 최적화)

  • Oh, Sung-Kwun;Kim, Young-Hoon;Park, Ho-Sung;Kim, Jeong-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.639-647
    • /
    • 2011
  • In this paper, we introduce a design methodology of data-centroid Radial Basis Function neural networks with extended polynomial function. The two underlying design mechanisms of such networks involve K-means clustering method and Particle Swarm Optimization(PSO). The proposed algorithm is based on K-means clustering method for efficient processing of data and the optimization of model was carried out using PSO. In this paper, as the connection weight of RBF neural networks, we are able to use four types of polynomials such as simplified, linear, quadratic, and modified quadratic. Using K-means clustering, the center values of Gaussian function as activation function are selected. And the PSO-based RBF neural networks results in a structurally optimized structure and comes with a higher level of flexibility than the one encountered in the conventional RBF neural networks. The PSO-based design procedure being applied at each node of RBF neural networks leads to the selection of preferred parameters with specific local characteristics (such as the number of input variables, a specific set of input variables, and the distribution constant value in activation function) available within the RBF neural networks. To evaluate the performance of the proposed data-centroid RBF neural network with extended polynomial function, the model is experimented with using the nonlinear process data(2-Dimensional synthetic data and Mackey-Glass time series process data) and the Machine Learning dataset(NOx emission process data in gas turbine plant, Automobile Miles per Gallon(MPG) data, and Boston housing data). For the characteristic analysis of the given entire dataset with non-linearity as well as the efficient construction and evaluation of the dynamic network model, the partition of the given entire dataset distinguishes between two cases of Division I(training dataset and testing dataset) and Division II(training dataset, validation dataset, and testing dataset). A comparative analysis shows that the proposed RBF neural networks produces model with higher accuracy as well as more superb predictive capability than other intelligent models presented previously.

GENERALIZED DERIVATIONS WITH CENTRALIZING CONDITIONS IN PRIME RINGS

  • Das, Priyadwip;Dhara, Basudeb;Kar, Sukhendu
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.83-93
    • /
    • 2019
  • Let R be a noncommutative prime ring of characteristic different from 2, U the Utumi quotient ring of R, C the extended centroid of R and f($x_1,{\ldots},x_n$) a noncentral multilinear polynomial over C in n noncommuting variables. Denote by f(R) the set of all the evaluations of f($x_1,{\ldots},x_n$) on R. If d is a nonzero derivation of R and G a nonzero generalized derivation of R such that $$d(G(u)u){\in}Z(R)$$ for all $u{\in}f(R)$, then $f(x_1,{\ldots},x_n)^2$ is central-valued on R and there exists $b{\in}U$ such that G(x) = bx for all $x{\in}R$ with $d(b){\in}C$. As an application of this result, we investigate the commutator $[F(u)u,G(v)v]{\in}Z(R)$ for all $u,v{\in}f(R)$, where F and G are two nonzero generalized derivations of R.

Localization using Centroid in Wireless Sensor Networks (무선 센서 네트워크에서 위치 측정을 위한 중점 기 법)

  • Kim Sook-Yeon;Kwon Oh-Heum
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.5
    • /
    • pp.574-582
    • /
    • 2005
  • Localization in wireless sensor networks is essential to important network functions such as event detection, geographic routing, and information tracking. Localization is to determine the locations of nodes when node connectivities are given. In this paper, centroid approach known as a distributed algorithm is extended to a centralized algorithm. The centralized algorithm has the advantage of simplicity. but does not have the disadvantage that each unknown node should be in transmission ranges of three fixed nodes at least. The algorithm shows that localization can be formulated to a linear system of equations. We mathematically show that the linear system have a unique solution. The unique solution indicates the locations of unknown nodes are capable of being uniquely determined.

NOTES ON GENERALIZED DERIVATIONS ON LIE IDEALS IN PRIME RINGS

  • Dhara, Basudeb;Filippis, Vincenzo De
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.3
    • /
    • pp.599-605
    • /
    • 2009
  • Let R be a prime ring, H a generalized derivation of R and L a noncommutative Lie ideal of R. Suppose that $u^sH(u)u^t$ = 0 for all u $\in$ L, where s $\geq$ 0, t $\geq$ 0 are fixed integers. Then H(x) = 0 for all x $\in$ R unless char R = 2 and R satisfies $S_4$, the standard identity in four variables.

GENERALIZED DERIVATIONS IN PRIME RINGS AND NONCOMMUTATIVE BANACH ALGEBRAS

  • De Filippis, Vincenzo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.4
    • /
    • pp.621-629
    • /
    • 2008
  • Let R be a prime ring of characteristic different from 2, C the extended centroid of R, and $\delta$ a generalized derivations of R. If [[$\delta(x)$, x], $\delta(x)$] = 0 for all $x\;{\in}\;R$ then either R is commutative or $\delta(x)\;=\;ax$ for all $x\;{\in}\;R$ and some $a\;{\in}\;C$. We also obtain some related result in case R is a Banach algebra and $\delta$ is either continuous or spectrally bounded.