DOI QR코드

DOI QR Code

전자빔 조사를 이용한 호박꽃과실파리의 불임 수컷 제조 기술과 유전방제 응용

Technique to Generate Sterile Males of Striped Fruit Flies, Zeugodacus scutellata, using Electron Beam Irradiation and their Application to Genetic Control

  • Kim, Yonggyun (Department of Plant Medicals, College of Life Sciences, Andong National University) ;
  • Al Baki, Md. Abdullah (Department of Plant Medicals, College of Life Sciences, Andong National University) ;
  • Kwon, Gimyeon (Biological Utilization Institute)
  • 투고 : 2019.11.08
  • 심사 : 2020.01.29
  • 발행 : 2020.03.01

초록

호박꽃과실파리(Zeugodacus scutellata)는 국내 자생종으로 국제적으로는 검역 대상 과실파리 중 하나로 분류되고 있다. 불임충방사기술(sterile insect release technique (SIT))은 검역 대상 과실파리를 박멸하는 데 이용되어 왔다. 본 연구는 호박꽃과실파리를 대상으로 불임충 제조 기술을 개발하여 SIT 기술로 이 해충에 대한 방제 가능성을 분석하였다. 이에 앞서 먼저 형광현미경 기술로 호박꽃과실파리의 생식관련 기관을 관찰하였다. 다영양실형 난소소관을 갖는 1 쌍의 난소는 약 100 개의 난포를 발달시키며, 각 난포는 난모세포와 영양세포를 지니며 난포세포가 둘러싸는 구조를 지닌다. 난소 발육은 우화 후 10 일이 지나 발육을 시작하고 우화 후 20 일이 되면 난각을 가지고 있는 난모세포를 발달시켰다. 수컷의 경우 성숙된 정소가 우화 직후에 관찰되었으며 수정관에는 운동성이 있는 정자로 채워져 있었다. 불임 수컷을 제조하기 위해 다양한 선량(0~1,000 Gy)의 전자빔을 3~5 일 경과된 번데기에 조사하였다. 200 Gy 세기 전자빔으로 번데기에 조사하면 무처리와 차이 없이 성충으로 발육하였고 이후 정상 암컷과 교미행동을 보였다. 비록 이들 처리 수컷의 교미는 무처리 수컷과 비교하여 큰 차이 없는 산란력을 보였지만 산란된 알들은 부화하지 못했다. 다음으로 200 Gy 조사로 형성된 불임 수컷을 정상 암컷과 수컷이 함께 있는 장소에 방사하였다. 이때 불임충 수컷 은 정상 수컷에 비해 9 배 많은 수로 방사하였다. 이러한 불임충 처리는 차세대 부화율을 현격하게 감소시켰다. 이상의 결과는 200 Gy 세기의 전자빔으로 호박꽃과실파리의 불임충을 제조할 수 있고, 이렇게 형성된 불임충은 SIT 방제에 적용할 수 있다는 것을 제시하고 있다.

The striped fruit fly, Zeugodacus scutellata, is endemic in Korea, but it has been regarded as one of the serious quarantine pests throughout the world. Sterile insect release technique (SIT) has been used to eradicate quarantine fruit flies. This study developed a technique to generate sterile males and applied SIT to control Z. scutellata. First of all, the reproductive systems of Z. scutellata adults were examined with fluorescent microscope. Polytrophic ovaries comprises of around 100 follicles with developing oocytes. Each follicle contains an oocyte with several nurse cells and are surrounded with follicular epithelium. Oocyte development began at 10 days after adult emergence (DAE) and formed chorionated oocytes after 20 DAE. On the other hand, male testes were well developed just after adult emergence. The vas deferens was filled with motile sperms. To generate sterile males, different doses (0~1,000 Gy) doses of electron beam were irradiated to 3~5 days old pupae of Z. scutellata. When male pupae were irradiated with electron beam at 200 Gy, they developed and mated with females without any significant difference compared to untreated males. Although the untreated females mated with the 200 Gy-irradiated males laid eggs, no eggs did not hatch. The 200 Gy-irradiated males were then applied to untreated male and female flies in a density ratio of 1:9 (untreated males : treated males). The laid eggs suffered significant infertility. These results suggest that electron beam-irradiated pupae at 200 Gy resulted in male sterility and the resulting males would be applied to SIT.

키워드

참고문헌

  1. Aketarawong, N., Chinvinijkul, S., Orankanok, W., Guglielmino, C.R., Franz, G., Malacrida, A.R., Thanaphum, S., 2011. The utility of microsatellite DNA markers for the evaluation of area-wide integrated pest management using SIT for the fruit fly, Bactrocera dorsalis (Hendel), control programs in Thailand. Genetica 139, 129-140. https://doi.org/10.1007/s10709-010-9510-8
  2. Al Baki, Kim, H., Keum, E., Song, Y., Kim. Y., Kwon, K., Park, Y., 2017. Age grading and gene flow of overwintered Bactrocera scutellata populations. J. Asia Pac. Entomol. 20, 1402-1409. https://doi.org/10.1016/j.aspen.2017.10.008
  3. Al Baki, M.A., Lee, D.W, Jung, J.K, Kim, Y., 2019. Insulin signaling mediates previtellogenic development and enhances juvenile hormone-mediated vitellogenesis in a lepidopteran insect, Maruca vitrata. BMC Dev. Biol. 19, 14. https://doi.org/10.1186/s12861-019-0194-8
  4. Alphey, L., 2002. Re-engineering the sterile insect technique. Insect Biochem. Mol. Biochem. 32, 1243-1247. https://doi.org/10.1016/S0965-1748(02)00087-5
  5. Andreawartha, H.G., Monro, J., Richardson, N.L., 1967. The use of sterile males to control populations of Queensland fruit fly, Dacus tryoni (Frogg.) (Diptera: Tephritidae). II. Filed experiments in New South Wales. Aust. J. Zool. 15, 461-473. https://doi.org/10.1071/ZO9670461
  6. Barry, J.D., McInnis, D.O., Gates, D., Morse, J.G., 2003. Effects of irradiation on mediterranean fruit flies (Diptera: Tephritidae): emergence, survivorship, lure attraction and mating competition. J. Econ. Entomol. 96, 615-622. https://doi.org/10.1093/jee/96.3.615
  7. Benelli, G., 2015. Aggression in Tephritidae flies: Where, when, why? Future directions for research in integrated pest management. Insects 6, 38-53. https://doi.org/10.3390/insects6010038
  8. Benelli, G., Daane, K.M., Canale, A., Niu, C.-Y., Messing, R.H., Vargas, R.I., 2014. Sexual communication and related behaviours in Tephritidae: current knowledge and potential applications for integrated pest management. J. Pest Sci. 87, 385-405. https://doi.org/10.1007/s10340-014-0577-3
  9. Chang, C.L., Villalun, M., Geib, S.M., Goodman, C.L., Ringbauer, J., Stanley, D., 2015. Pupal X-ray irradiation influences protein expression in adults of the oriental fruit fly, Bactrocera dorsalis. J. Insect Physiol. 76, 7-16. https://doi.org/10.1016/j.jinsphys.2015.03.002
  10. Drew, R.A.I., Yuval, B., 2000. The evolution of fruit fly feeding behavior, in: Aluja, M., Norrbom, A.L. (Eds.), Fruit flies (Tephritidae): phylogeny and evolution of behaviour, CRC Press, Boca Raton, FL. pp. 731-750.
  11. Fu, G.L., Condon, K.C., Epton, M.J., Gong, P., Jin, L., Condon, G.C., Morrison, N.I., Dafa'alla, T.H., Alphey, L., 2007. Female-specific insect lethality engineering using alternative splicing. Nat. Biotechnol. 25, 353-357. https://doi.org/10.1038/nbt1283
  12. Guillen, A.J.C., Perez, L.M., Lopez, E.E., Lopez, V.E.F., Marroquin, S.V.H., Dominguez, V.J.D., Recinos, C.E.C., 2016. Manual to differentiate wild Mediterrarean fruit flies Ceratitis capitata (Wied.) from unirradiated (fertile) and irradiated (sterile) Vienna temperature sensitive lethal strain flies. Programa Moscamed SAGARPA-SENASICA, Mexico.
  13. Han, H.Y., Kwon, Y.J., 2010. A list of North Korean Tephritoid species (Diptera: Tephritoidea) deposited in the Hungarian natural history museum. Korean J. Syst. Zool. 26, 251-260.
  14. Han, H.Y., Suk, S.W., Lee, Y.B., Lee, H.S. 2014. National List of Species of Korea Insect (Diptera II). National Institute of Biological Resources. Incheon. pp. 1-268.
  15. Harris, E.J., Cunningham, R.T., Tanaka, N., Ohinata, K., Schroeder, W.J., 1986. Development of the sterile-insect technique on the Island of Lanai, Hawaii for suppression of the Mediterranean fruit fly. Proc. Hawaii. Entomol. Soc. 26, 77-88.
  16. Hee, A.K.W., Tan, K.H., 2004. Male sex pheromonal components derived from methyl eugenol in the hemolymph of the fruit fly Bactrocera papayae. J. Chem. Ecol. 30, 2127-2138. https://doi.org/10.1023/B:JOEC.0000048778.02561.70
  17. Kim, Y., Kim, D., 2016. Integrated pest management against Bactrocera fruit flies. Korean J. Appl. Entomol. 55, 359-376. https://doi.org/10.5656/KSAE.2016.10.0.026
  18. Kim, Y., Kwon, G., 2018. Development of female annihilation technique against pumpkin fruit flies using protein-based terpinyl acetate. Korean J. Appl. Entomol. 57, 69-75. https://doi.org/10.5656/KSAE.2018.01.1.057
  19. Kim, Y.P., Jeon, S.W., Lee, S.G., Kim, K.H., Choi, N.J., Hwang, C.Y., 2010. Seasonal occurrence and damage of Bactrocera scutellata (Diptera: Tephritidae) in Jeonbuk province. Korean J. Appl. Entomol. 49, 299-304. https://doi.org/10.5656/KSAE.2010.49.4.299
  20. Kim, D.S., Jang, Y.S., Choi, K.S., Kang, T.J., Jeon, H.Y., 2012. Olfactory responses of Bactrocera depressa (Diptera: Tephritidae) in the field and laboratory. J. Subtrop. Agri. Biotechnol. 28, 33-44.
  21. Kim, Y., Kim, D., Park, K., Han, H., 2017a. Manual for security system against high risk fruit flies. HongReung Science, Seoul, Korea.
  22. Kim, K., Kim, M., Kwon, G., Kim, Y., 2017b. Technologies required for development of trap-based MAT control against the striped fruit fly, Bactrocera scutellata. Korean J. Appl. Entomol. 56, 51-60. https://doi.org/10.5656/KSAE.2017.02.1.058
  23. Kim, Y., Kim, D., Park, K., Han, H., 2018. Manual (II) for security system against high risk fruit flies. HongReung Science, Seoul, Korea.
  24. Kim, Y., Al Baki, M.A., Kwon, G., Kim, D., Park, K.C., Ahn, J.J., 2019. Discrimination of different generations of Zeugodacus scutellata using age grading technique and their local genetic variation. J. Asia Pac. Entomol. 22, 908-915. https://doi.org/10.1016/j.aspen.2019.07.010
  25. Knipling, E., 1955. Possibilities of insect control or eradication through use of sexually sterile males. J. Econ. Entomol. 48, 459-462. https://doi.org/10.1093/jee/48.4.459
  26. Koyama, J., 1996. Eradication of the melon fly, Bactrocera cucurbitae by the sterile insect technique in Japan. Proceedings of IAEA training course on the use of sterile insect and related techniques for the area-wide management of insect pests, Gainesville, FL, USA.
  27. Kwon, S., Choi, G.J., Kim, K.S., Kwon, H.J., 2014. Control of Botrytis cinerea and postharvest quality of cut roses by electron beam irradiation. Korean J. Hort. Sci. Technol. 32, 507-516.
  28. Leftwich, P.T., Koukidou, M., Rempoulakis, P., Gong, H.F., Zacharopoulou, A., Fu, G., Chapman, T., Econopoulos, A., Vontas, J., Alphey, L., 2014. Genetic elimination of field-cage populations of mediterranean fruit flies. Proc. R. Soc. B 281, 20141372.
  29. Lyu, D.P., Lee, H.S., 2017. The red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae: Myrmicinae) discovered in Busan sea port, Korea. Korean J. Appl. Entomol. 56, 437-438. https://doi.org/10.5656/KSAE.2017.11.0.049
  30. Mastrangelo, T., Parker, A.G., Jessup, A., Pereira, R., Orozco-Dvila, D., Islam, A., Dammalage, T., Walder, J.M.M., 2010. A new generation of X ray irradiators for insect sterilization. J. Econ. Entomol. 103, 85-94. https://doi.org/10.1603/EC09139
  31. Norrbom, A.L., Carroll, L.E., Thompson, F.C., White, I.M., Freidberg, A., 1999. Systematic database of names, in: Thompson, F.C. (Ed.), Fruit fly expert system and systematic information database, Diptera Data Dissemination Disk 1 & Myia. pp. 65-251.
  32. SAS Institute, Inc., 1989. SAS/STAT User's Guide. SAS Institute, Inc., Cary, NC.
  33. Shelly, T.E., Edu, J., McInnis, D., 2010. Pre-release consumption of methyl eugenol increases the mating competitiveness of sterile males of the oriental fruit fly, Bactrocera dorsalis, in large field enclosures. J. Insect Sci. 10, 8.
  34. Steiner, L.F., Harris, E.J., Mitchell, W.C., Fujimoto, M.S., Christenson, L.D., 1965. Melon fly eradication by overflooding with sterile flies. J. Econ. Entomol. 58, 519-521. https://doi.org/10.1093/jee/58.3.519
  35. Steiner, L.F., Hart, W.G., Harris, E.J., Cunningham, R.T., Ohinata, K., Kamakahi, D.C., 1970. Eradication of the oriental fruit fly from the Mariana Islands by the methods of male annihilation and sterile insect release. J. Econ. Entomol. 63, 131-135. https://doi.org/10.1093/jee/63.1.131
  36. Vargas, R.I., Pinero, J.C., Mau, R.F.L., Jang, E.B,, Klungness, L.M., McInnis, D.O., Harris, E.B., McQuate, G.T., Bautista, R.C., Wong, L., 2010. Area-wide suppression of the Mediterranean fruit fly, Ceratitis capitata, and the Oriental fruit fly, Bactrocera dorsalis, in Kamuala, Hawaii. J. Insect Sci. 10, 135. https://doi.org/10.1673/031.010.13501
  37. Yusof, S., Dzomir, A.Z.M., Yaakop, S., 2019. Effect of irradiating puparia of oriental fruit fly (Diptera: Tephritidae) on adult survival and fecundity for sterile insect technique and quarantine purposes. J. Econ. Entomol. (In press).
  38. White, I.M., Elson-Harris, M.M., 1992. Fruit flies of economic significance: their identification and bionomics. CAB International/ACIAR.