초록
근래의 위치 측위 방법으로 GPS(Global Positioning System) 위성정보를 활용하는 전파항법 방식을 많이 사용하고 있다. GPS 활용범위가 넓어지고 다양한 측위 정보를 기반으로 하는 분야가 생기면서 보다 높은 정확도를 얻기 위한 새로운 방법들이 요구되고 있다. 자율주행차의 경우 IMU(Inertial Measurement Unit)를 사용한 항법 시스템인 INS(Inertial Navigation System)와 차량 내부 센서를 이용한 DR(Dead Reckoning) 알고리즘을 사용하여 GPS의 정확도 저하나 음영지역에서의 위치 측정방법으로 사용하고 있다. 그러나 이러한 측위 방법은 대형화되는 빌딩 지역, 터널, 지하 주차장 등 다양한 음영지역과 시간이 지남에 따라 오차가 계속 증가하는 누적 기반 위치추정 방법의 한계로 인해 많은 문제 요소가 있다. 본 논문은 GPS 음영지역에서 차량의 위치 측위를 위해, 대중적 무선 통신인 WLAN을 이용한 Fingerprint 기법을 4개의 Anchor 형태로 AP(Access Point)와 지향성 안테나를 위치하여 넓은 지하 주차공간에서 효율적인 측위 방법을 제시하고 시간이 지남에 따라 주차된 차량이 이동하는 환경에서도 변화가 없는 위치 측위 결과를 입증하였다.
Recently, the radio navigation method utilizing the GPS(Global Positioning System) satellite information is widely used as the method to measure the position of objects. As GPS applications become wider and fields based on various positioning information emerge, new methods for achieving higher accuracy are required. In the case of autonomous vehicles, the INS(Inertial Navigation System) using the IMU(Inertial Measurement Unit), and the DR(Dead Reckoning) algorithm using the in-vehicle sensor, are used for the purpose of preventing degradation of accuracy of the GPS and to measure the position in the shadow area. However, these positioning methods have many elements of problems due not only to the existence of various shaded areas such as building areas that are continually enlarged, tunnels, underground parking lots and but also to the limitations of accumulation-based location estimation methods that increase in error over time. In this paper, an efficient positioning method in a large underground parking space using Fingerprint method is proposed by placing the AP(Access Points) and directional antennas in the form of four anchors using WLAN, a popular means of wireless communication, for positioning the vehicle in the GPS shadow area. The proposed method is proved to be able to produce unchanged positioning results even in an environment where parked vehicles are moved as time passes.