• Title/Summary/Keyword: Fingerprint Method

Search Result 427, Processing Time 0.026 seconds

Analysis of Fingerprint Recognition Characteristics Based on New CGH Direct Comparison Method and Nonlinear Joint Transform Correlator

  • Jeong, Man-Ho
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.445-450
    • /
    • 2009
  • Fingerprint recognition using a joint transform correlator (JTC) is the most well-known technology among optical fingerprint recognition methods. The JTC method optically compares the reference fingerprint image with the sample fingerprint image then examines match or non-match by acquiring a correlation peak. In contrast to the JTC method, this paper presents a new method to examine fingerprint recognition by producing a computer generated hologram (CGH) of those two fingerprint images and directly comparing them. As a result, we present some parameters to show that fingerprint recognition capability of the CGH direct comparison method is superior to that of the JTC method.

Fingerprint Image Quality Assessment for On-line Fingerprint Recognition (온라인 지문 인식 시스템을 위한 지문 품질 측정)

  • Lee, Sang-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.2
    • /
    • pp.77-85
    • /
    • 2010
  • Fingerprint image quality checking is one of the most important issues in on-line fingerprint recognition because the recognition performance is largely affected by the quality of fingerprint images. In the past, many related fingerprint quality checking methods have typically considered the local quality of fingerprint. However, It is necessary to estimate the global quality of fingerprint to judge whether the fingerprint can be used or not in on-line recognition systems. Therefore, in this paper, we propose both local and global-based methods to calculate the fingerprint quality. Local fingerprint quality checking algorithm considers both the condition of the input fingerprints and orientation estimation errors. The 2D gradients of the fingerprint images were first separated into two sets of 1D gradients. Then,the shapes of the PDFs(Probability Density Functions) of these gradients were measured in order to determine fingerprint quality. And global fingerprint quality checking method uses neural network to estimate the global fingerprint quality based on local quality values. We also analyze the matching performance using FVC2002 database. Experimental results showed that proposed quality check method has better matching performance than NFIQ(NIST Fingerprint Image Quality) method.

A study on correlation-based fingerprint recognition method (광학적 상관관계를 기반으로 하는 지문인식 방법에 관한 연구)

  • 김상백;주성현;정만호
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.6
    • /
    • pp.493-500
    • /
    • 2002
  • Fingerprint recognition is concerned with fingerprint acquisition and matching. Our research was focused on a fingerprint matching method using an inkless fingerprint input sensor at the fingerprint acquisition step. Since an inkless fingerprint sensor produces a digital-image-processed fingerprint image, we did not consider noise that can happen while acquiring the fingerprint. And making the user attempt fingerprint input as random, we considered image distortion that translation and rotation are included as complex. NJTC algorithm is used for fingerprint identification and verification. The method to find the center of the fingerprint is added in the NJTC algorithm to supplement discrimination of fingerprint recognition. From this center point, we decided the optimum cropping size for effective matching with pixels and demonstrated that the proposed method has high discrimination and high efficiency.

An Efficient Fingerprint Matching by Multiple Reference Points

  • Khongkraphan, Kittiya
    • Journal of Information Processing Systems
    • /
    • v.15 no.1
    • /
    • pp.22-33
    • /
    • 2019
  • This paper introduces an efficient fingerprint matching method based on multiple reference minutiae points. First, we attempt to effectively align two fingerprints by employing multiple reference minutiae points. However, the corresponding minutiae points between two fingerprints are ambiguous since a minutia of one fingerprint can be a match to any minutia of the other fingerprint. Therefore, we introduce a novel method based on linear classification concept to establish minutiae correspondences between two fingerprints. Each minutiae correspondence represents a possible alignment. For each possible alignment, a matching score is computed using minutiae and ridge orientation features and the maximum score is then selected to represent the similarity of the two fingerprints. The proposed method is evaluated using fingerprint databases, FVC2002 and FVC2004. In addition, we compare our approach with two existing methods and find that our approach outperforms them in term of matching accuracy, especially in the case of non-linear distorted fingerprints. Furthermore, the experiments show that our method provides additional advantages in low quality fingerprint images such as inaccurate position, missing minutiae, and spurious extracted minutiae.

A Study on Fingerprint Core-point Detection (지문의 중심점 검출에 대한 연구)

  • 김선주;이동재;김주섭;김재희
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.238-241
    • /
    • 2000
  • A fingerprint core-point detection algorithm is presented in this paper. Core-point is useful for fingerprint classification and also for the fingerprint verification since it giver a reference to a fingerprint. Traditional methods of finding the core-point is introduced. These methods are the method using poincare index and the method using sine component of ridge directions. The proposed method is modified algorithm of the latter using the poincare index. The experimental results show that the proposed algorithm achieves almost the same accuracy with faster speed.

  • PDF

Fingerprint Recognition using Gabor Filter (Gabor 필터를 이용한 지문 인식)

  • Shim, Hyun-Bo;Park, Young-Bae
    • The KIPS Transactions:PartB
    • /
    • v.9B no.5
    • /
    • pp.653-662
    • /
    • 2002
  • Fingerprint recognition is a task to find a matching pattern in a database for a specific persons fingerprint. To accomplish this task, preprocessing, classification, and matching steps are taken for a large-scale fingerprint database but only the matching step is taken without classification for a small-scale database. The primary matching method is based on minutiae (ridge ending point, bifurcation). This matching method, however, requires a very complex computation to extract minutiae and match minutiae-to-minutiae accurately due to translation, rotation, nonlinear deformation of fingerprint and occurrence of spurious minutiae. In addition, this method requires a laborious preprocessing step in order to improve the quality of fingerprint Images. This paper proposes a new simple method to eliminate these problems. With this method, Gabor variance is used instead of minutiae for fingerprint recognition. The Gabor variance is computed from Gabor features that result from filtering a fingerprint image through Gabor filter. In this paper, this method is described and its test result is shown, demonstrating the potential of using this new method for fingerprint recognition.

A Study on Strong Minutiae Extraction for Secure and Rapid Fingerprint Authentication

  • Han, Jin-Ho
    • International journal of advanced smart convergence
    • /
    • v.6 no.2
    • /
    • pp.65-71
    • /
    • 2017
  • Fingerprints are increasingly used for user authentication in small devices such as mobile phones. Therefore, it is important for Fingerprint authentication systems in personal devices to protect the user's fingerprint information while performing efficiently with a lightweight matching algorithm. In this paper, we propose a new method to extract strong minutiae with unique numbers from fingerprint images. Strong minutiae are at all times obtained from fingerprint images, and can be useful for secure and rapid fingerprint authentication. The binary information of strong minutiae of a fingerprint can be transformed securely and can create cancelable fingerprint templates. Also the bit-strings of strong minutiae decrease computing time necessary for the matching procedure between two fingerprints due to the simplicity of bitwise operations. First, we enroll several fingerprints images of a finger. From these images we select a reference fingerprint and put a number on each minutia. Following this procedure, we search for mated-minutiae between the reference fingerprint and other fingerprints one by one. Finally we derive unique numbers of strong minutiae of the finger. In the experiment with the FVC2004 fingerprint database, we show that using the proposed method, strong minutiae can be extracted successfully.

Smart Optical Fingerprint Sensor for Robust Fake Fingerprint Detection

  • Baek, Young-Hyun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.2
    • /
    • pp.71-75
    • /
    • 2017
  • In this paper, a smart optical fingerprint sensor technology that is robust against faked fingerprints. A new lens and prism accurately detect fingerprint ridges and valleys that are needed to express a fingerprint's intrinsic characteristics well. The proposed technology includes light path configuration and an optical fingerprint sensor that can effectively identify faked fingerprint features. Results of simulation show the smart optical fingerprint sensor classifies the characteristics of faked fingerprints made from silicone, gelatin, paper, and rubber, and show that the proposed technology has superior detection performance with faked fingerprints, compared to the existing infrared discrimination method.

Fast Fingerprint Alignment Method and Weighted Feature Vector Extraction Method in Filterbank-Based Fingerprint Matching (필터뱅크 기반 지문정합에서 빠른 지문 정렬 방법 및 가중치를 부여한 특징 벡터 추출 방법)

  • 정석재;김동윤
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.1
    • /
    • pp.71-81
    • /
    • 2004
  • Minutiae-based fingerprint identification systems use minutiae points, which cannot completely characterize local ridge structures. Further, this method requires many methods for matching two fingerprint images containing different number of minutiae points. Therefore, to represent the fired length information for one fingerprint image, the filterbank-based method was proposed as an alternative to minutiae-based fingerprint representation. However, it has two shortcomings. One shortcoming is that similar feature vectors are extracted from the different fingerprints which have the same fingerprint type. Another shortcoming is that this method has overload to reduce the rotation error in the fingerprint image acquisition. In this paper, we propose the minutia-weighted feature vector extraction method that gives more weight in extracting feature value, if the region has minutiae points. Also, we Propose new fingerprint alignment method that uses the average local orientations around the reference point. These methods improve the fingerprint system's Performance and speed, respectively. Experimental results indicate that the proposed methods can reduce the FRR of the filterbank-based fingerprint matcher by approximately 0.524% at a FAR of 0.967%, and improve the matching performance by 5% in ERR. The system speed is over 1.28 times faster.

Audio Fingerprint Retrieval Method Based on Feature Dimension Reduction and Feature Combination

  • Zhang, Qiu-yu;Xu, Fu-jiu;Bai, Jian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.522-539
    • /
    • 2021
  • In order to solve the problems of the existing audio fingerprint method when extracting audio fingerprints from long speech segments, such as too large fingerprint dimension, poor robustness, and low retrieval accuracy and efficiency, a robust audio fingerprint retrieval method based on feature dimension reduction and feature combination is proposed. Firstly, the Mel-frequency cepstral coefficient (MFCC) and linear prediction cepstrum coefficient (LPCC) of the original speech are extracted respectively, and the MFCC feature matrix and LPCC feature matrix are combined. Secondly, the feature dimension reduction method based on information entropy is used for column dimension reduction, and the feature matrix after dimension reduction is used for row dimension reduction based on energy feature dimension reduction method. Finally, the audio fingerprint is constructed by using the feature combination matrix after dimension reduction. When speech's user retrieval, the normalized Hamming distance algorithm is used for matching retrieval. Experiment results show that the proposed method has smaller audio fingerprint dimension and better robustness for long speech segments, and has higher retrieval efficiency while maintaining a higher recall rate and precision rate.