DOI QR코드

DOI QR Code

Transversely isotropic thin circular plate with multi-dual-phase lag heat transfer

  • Lata, Parveen (Department of Mechanical Engineering, Persian Gulf University) ;
  • Kaur, Iqbal (Department of Mechanical Engineering, Persian Gulf University) ;
  • Singh, Kulvinder (Department of Aerospace Engineering, Ryerson University)
  • Received : 2019.12.25
  • Accepted : 2020.04.03
  • Published : 2020.05.10

Abstract

The present research deals with the multi-dual-phase-lags thermoelasticity theory for thermoelastic behavior of transversely isotropic thermoelastic thin circular plate The Laplace and Hankel transform techniques have been used to find the solution of the problem. The displacement components, stress components, and conductive temperature distribution are computed in the transformed domain with the radial distance and further determined in the physical domain using numerical inversion techniques. The effect of rotation and two temperature are depicted graphically on the resulting quantities.

Keywords

References

  1. Abbas, I.A. and Youssef, H.M. (2009), "Finite element analysis of two-temperature generalized magneto-thermoelasticity", Arch. Appl. Mech., 79(10), 917-925. https://doi.org/10.1007/s00419-008-0259-9
  2. Abbas, I.A. and Youssef, H.M. (2012), "A nonlinear generalized thermoelasticity model of temperature-dependent materials using finite element method", Int, J, Thermophys, 33(7), 1302-1313. doi:ttps://doi.org/10.1007/s10765-012-1272-3.
  3. Abbas, I.A., El-Amin, M.F. and Salama, A. (2009), "Effect of thermal dispersion on free convection in a fluid saturated porous medium", Int. J. Heat Fluid Fl., 30(2), 229-236. doi:https://doi.org/10.1016/j.ijheatfluidflow.2009.01.004.
  4. Abd-Allaa, A. and Mahmoud, S.R. (2011), "Magneto-thermociscoelastic interactions in an unbounded non-homogeneous body with a spherical cavity subjected to a periodic loading", Appl. Math. Sci., 5(29), 1431-1447.
  5. Altunsaray, E. (2018), "Free vibration of symmetrically laminated quasi-isotropic super-elliptical thin plates", Steel Compos. Struct., 29(4), 493-508. doi:https://doi.org/10.12989/scs.2018.29.4.493.
  6. Atmane, H.A., Tounsi, A., Bernard, F. and Mahmoud, S. (2015). "A computational shear displacement model for vibrational analysis of functionally graded beams with porosities", Steel Compos. Struct., 19(2), 369-384. doi:https://doi.org/10.12989/scs.2015.19.2.369.
  7. Banh, T.T., Shin, S. and Lee, D. (2018), "Topology optimization for thin plate on elastic foundations by using multi-material", Steel Compos. Struct., 27(2), 177-184. doi:https://doi.org/10.12989/scs.2018.27.2.177.
  8. Bhatti, M.M. and Lu, D.Q. (2019b), "Analytical study of the headon collision process between hydroelastic solitary waves in the presence of a uniform current", Symmetry, 11(3), 333. doi: https://doi.org/10.3390/sym11030333
  9. Bhatti, M.M., Ellahi, R., Zeeshan, A., Marin, M. and Ijaz, N. (2019), "Numerical study of heat transfer and Hall current impact on peristaltic propulsion of particle-fluid suspension with compliant wall properties", Modern Phys. Lett. B, 33(35), 1950439. doi:10.1142/s0217984919504396.
  10. Bijarnia, R. and Singh, B. (2016), "Propagation of plane waves in a rotating transversely isotropic two temperature generalized thermoelastic solid half-space with voids", Int. J. Appl. Mech. Eng., 21(1), 285-301. doi:https://doi.org/10.1515/ijame-2016-0018
  11. Bouderba, B., Ahmed, H.M. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., 14(1), 85-104. doi:https://doi.org/10.12989/scs.2013.14.1.085.
  12. Bousahla, A.A., Benyoucef, S., Tounsi, A. and Mahmoud, S. (2016), "On thermal stability of plates with functionally graded coefficient of thermal expansion", Struct. Eng. Mech., 60(2), 313-335. doi:https://doi.org/10.12989/sem.2016.60.2.313.
  13. Dhaliwal, R. and Singh, A. (1980), Dynamic coupled thermoelasticity. New Delhi,India: Hindustan Publication Corporation.
  14. Eftekhari, S.A. (2018), "A coupled Ritz-finite element method for free vibration of rectangular thin and thick plates with general boundary conditions", Steel Compos. Struct., 28(6), 655-670. doi:https://doi.org/10.12989/scs.2018.28.6.655.
  15. Elsheikh, A.H., Guo, J. and Lee, K.M. (2019), "Thermal deflection and thermal stresses in a thin circular plate under an axisymmetric heat source", J. Therm. Stresses, 42(3), 361-373. doi:https://doi.org/10.1080/01495739.2018.1482807
  16. Gaikwad, K.R. (2016), "Two-dimensional steady-state temperature distribution of a thin circular plate due to uniform internal energy generation", Appl. Interdiscip. Math., 3, 1-10.
  17. Gaikwad, K.R. (2019), "Axi-symmetric thermoelastic stress analysis of a thin circular plate due to heat generation", Int. J. Dynam. Syst. Differential Equations, 9(2), 187-202. doi:10.1504/IJDSDE.2019.100571
  18. Gaikwad, M. and Deshmukh, K.C. (2005), "Thermal deflection of an inverse thermoelastic problemin a thin isotropic circular plate", Appl. Math. Model., 29, 797-804. https://doi.org/10.1016/j.apm.2004.10.012
  19. Gaikwad, P.B., Ghadle, K.P. and Mane, J.K. (2012), "An inverse thermoelastic problem of circular plate", The Bulletin of Society for Mathematical Services and Standards, 1(1), 1-5. https://doi.org/10.18052/www.scipress.com/BSMaSS.1.1
  20. Honig, G.H. (1984), "A method for the inversion of Laplace Transform", J Comput. Appl Math., 10, 113-132. https://doi.org/10.1016/0377-0427(84)90075-X
  21. Kar, A. and Kanoria, M. (2011), "Analysis of thermoelastic response in a fiber reinforced thin annular disc with threephase-lag effect", Eur. J. Pure Appl. Math., 4(3), 304-321.
  22. Kaur, I. and Lata, P. (2019a), "Effect of hall current on propagation of plane wave in transversely isotropic thermoelastic medium with two temperature and fractional order heat transfer", SN Appl. Sciences, 1, 900. doi:https://doi.org/10.1007/s42452-019-0942-1
  23. Kaur, I. and Lata, P. (2019b), "Transversely isotropic thermoelastic thin circular plate with constant and periodically varying load and heat source", Int. J. Mech. Mater. Eng., 14(10), 1-13. doi:https://doi.org/10.1186/s40712-019-0107-4.
  24. Kaur, I. and Lata, P. (2019c), "Rayleigh wave propagation in transversely isotropic magneto thermoelastic medium with three phase lag heat transfer and diffusion", Int. J. Mech. Mater. Eng., 14(12), 1-11. doi:https://doi.org/10.1186/s40712-019-0108-3.
  25. Kumar, R., Sharma, N. and Lata, P. (2016), "Thermomechanical interactions in transversely isotropic magnetothermoelastic medium with vacuum and with and without energy dissipation with combined effects of rotation, vacuum and two temperatures", Appl. Math. Model., 40, 6560-6575. https://doi.org/10.1016/j.apm.2016.01.061
  26. Lata, P. and Kaur, I. (2019a), "Axisymmetric thermomechanical analysis of transversely isotropic magneto thermoelastic solid due to time-harmonic sources", Coupled Syst. Mech., 8(5), 415-437. doi:https://doi.org/10.12989/csm.2019.8.5.415.
  27. Lata, P. and Kaur, I. (2019b), "Plane wave propagation in transversely isotropic magnetothermoelastic rotating medium with fractional order generalized heat transfer", Struct. Monit. Maint., 6(3), 191-218. doi:https://doi.org/10.12989/smm.2019.6.3.191.
  28. Lata, P. and Kaur, I. (2019c), "Transversely isotropic thermoelastic thin circular plate with time harmonic sources", Geomech. Eng., 19(1), 29-36. doi:https://doi.org/10.12989/gae.2019.19.1.029.
  29. Mahmoud, S.R., Abd-Alla, A.M. and El-Sheikh, M.A. (2011), "Effect of the rotation on wave motion through cylindrical bore in a micropolar porous medium", Int. J. Modern Phys. B, 25(20), 2713-2728. doi:https://doi.org/10.1142/S0217979211101739.
  30. Mahmoud, S.R., Marin, M. and Al-Basyouni, K.S. (2015), "Effect of the initial stress and rotation on free vibrations in transversely isotropic human long dry bone", 171-184.
  31. Marin, M. (2010), "Lagrange identity method for microstretch thermoelastic materials", J. Math. Anal. Appl., 363(1), 275-286. https://doi.org/10.1016/j.jmaa.2009.08.045
  32. Marin, M. and Florea, O. (2014), "On temporal behaviour of solutions in thermoelasticity of porous micropolar bodies", Analele Stiintifice ale Universitatii Ovidius Constanta, 22(1), 169-188.
  33. Marin, M., Agarwal, R. and Mahmoud, S. (2013), "Nonsimple material problems addressed by the Lagrange's identity", Bound. Value Problem., 2013(135), 1-14. https://doi.org/10.1186/1687-2770-2013-1
  34. Marin, M., Craciun, E.M. and Pop, N. (2016), "Considerations on mixed initial-boundary value problems for micropolar porous bodies", Dynam. Syst. Appl., 25(1-2), 175-196.
  35. Marin, M., Ellahi, R. and Chirila, A. (2017a), "On solutions of Saint-Venant's problem for elastic dipolar bodies with voids", Carpathian J. Mathematics, 33(2), 219-232. https://doi.org/10.37193/CJM.2017.02.09
  36. Menasria, A., Bouhadra, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct., 25(2), 157-175. doi:https://doi.org/10.12989/scs.2017.25.2.157.
  37. Meradjah, M., Kaci, A., Houari, M.S., Tounsi, A. and Mahmoud, S. (2015). "A new higher order shear and normal deformation theory for functionally graded beams", Steel Compos. Struct., 18(3), 793-809. doi:https://doi.org/10.12989/scs.2015.18.3.793
  38. Mohamed, R.A., Abbas, I.A. and Abo-Dahab, S. (2009), "Finite element analysis of hydromagnetic flow and heat transfer of a heat generation fluid over a surface embedded in a non-Darcian porous medium in the presence of chemical reaction", Commun. Nonlinear Sci. Numer. Simul., 14(4), 1385-1395. doi:https://doi.org/10.1016/j.cnsns.2008.04.006
  39. Press, W., Teukolshy, S.A., Vellerling, W.T. and Flannery, B. (1986), Numerical recipes in Fortran, Cambridge University Press Cambridge.
  40. Shahani, A.R. and Torki, H.S. (2018), "Determination of the thermal stress wave propagation in orthotropic hollow cylinder based on classical theory of thermoelasticity", Continuum Mech. Thermodynam., 30(3), 509-527. doi:https://doi.org/10.1007/s00161-017-0618-2.
  41. Tikhe, A.K. and Deshmukh, K.C. (2005), "Inverse transient thermoelastic deformations in thin circular plates", Sadhana Academy Proceeding in Engineering Sciences, 30(5), 661-671.
  42. Tikhe, A. and Deshmukh, K. (2006), "Inverse heat conduction problem in a thin circular plate and its thermal deflection", Appl. Math. Model., 30(6), 554-560. https://doi.org/10.1016/j.apm.2005.12.014
  43. Varghese, V., Dhakate, T. and Khalsa, L.S. (2018), "Thermoelastic vibrations in a thin elliptic annulus plate with elastic supports", Theor. Appl. Mech. Lett., 8(1), 32-42. https://doi.org/10.1016/j.taml.2018.01.009
  44. Ventsel, E. and Krauthammer, T. (2001), Thin Plates and Shells: Theory: Analysis, and Applications, Taylor & Francis.
  45. Yang, N., Su, C., Wang, X.F. and Bai, F. (2016), "Mechanical properties of material in Q345GJ-C thick steel plates", Steel Compos. Struct., 21(3), 517-536. doi:https://doi.org/10.12989/scs.2016.21.3.517.
  46. Zenkour, A.M. (2018), "Refined microtemperatures multi-phaselags theory for plane wave propagation in thermoelastic medium", Results in Physics, 11, 929-937. doi:https://doi.org/10.1016/j.rinp.2018.10.030
  47. Zhao, F. (2008), "Nonlinear solutions for circular membranes and thin plates", Proceedings of SPIE-The International Society for Optical Engineering, 6926 69260W-1.

Cited by

  1. Dual-phase-lag model on thermo-microstretch elastic solid Under the effect of initial stress and temperature-dependent vol.38, pp.4, 2021, https://doi.org/10.12989/scs.2021.38.4.355