• Title/Summary/Keyword: rotation effect

Search Result 1,355, Processing Time 0.024 seconds

Enumeration of axial rotation

  • Yoon, Yong-San
    • Advances in biomechanics and applications
    • /
    • v.1 no.2
    • /
    • pp.85-93
    • /
    • 2014
  • In this paper, two procedures of enumerating the axial rotation are proposed using the unit sphere of the spherical rotation coordinate system specifying 3D rotation. If the trajectory of the movement is known, the integration of the axial component of the angular velocity plus the geometric effect equal to the enclosed area subtended by the geodesic path on the surface of the unit sphere. If the postures of the initial and final positions are known, the axial rotation is determined by the angular difference from the parallel transport along the geodesic path. The path dependency of the axial rotation of the three dimensional rigid body motion is due to the geometric effect corresponding to the closed loop discontinuity. Firstly, the closed loop discontinuity is examined for the infinitesimal region. The general closed loop discontinuity can be evaluated by the summation of those discontinuities of the infinitesimal regions forming the whole loop. This general loop discontinuity is equal to the surface area enclosed by the closed loop on the surface of the unit sphere. Using this quantification of the closed loop discontinuity of the axial rotation, the geometric effect is determined in enumerating the axial rotation. As an example, the axial rotation of the arm by the Codman's movement is evaluated, which other methods of enumerating the axial rotations failed.

An analysis of torsional flange-upsetting process based on slab method (슬래브법을 이용한 회전 다이 플랜지 업세팅 공정 해석)

  • Jae-Hoon Park
    • Design & Manufacturing
    • /
    • v.18 no.2
    • /
    • pp.29-34
    • /
    • 2024
  • This study intends to reduce forming load by adding die rotation to flange-upsetting process. Materials arc formed by the compression and rotational torque which are accrued from rotation of the lower die accompanied by axial compression of the punch. For the theoretic analysis of flange-upsetting process using rotation die, slab method was used. Furthermore, for the verification of the theoretic analysis results, FEM simulation using DEFORM 3D a commercial software was done, and through the model material experiment using Prasticine, the results were compared and reviewed. Flange-upsetting process using rotation die shows reduced forming load compared with process without die rotation and demonstrates uniform distribution of strain. And as for the effect of the reduction of forming load, the less the aspect ratio(h0/d0) and the greater friction coefficient, the greater effect is. With increase in die rotation velocity, the effect of forming load reduction also increases little by little, but its effect on forming load reduction is very negligible compared with other forming parameters. Theoretic analysis results and simulation results coincided pretty well. The flange-upsetting process using die rotation are evaluated as useful process that can produce reduction of forming load and uniform strain.

End shape and rotation effect on steel pipe pile installation effort and bearing resistance

  • Saleem, Muhammad A.;Malik, Adnan A.;Kuwano, Jiro
    • Geomechanics and Engineering
    • /
    • v.23 no.6
    • /
    • pp.523-533
    • /
    • 2020
  • The current study focuses on the effect of the end shape of steel pipe piles on installation effort and bearing resistance using the pressing method of installation under dense ground conditions. The effect of pile rotation on the installation effort and bearing resistance is also investigated. The model steel piles with a flat end, cone end and cutting-edge end were used in this study. The test results indicated that cone end pile with the pressing method of installation required the least installation effort (load) and showed higher ultimate resistance than flat and cutting-edge end piles. However, pressing and rotation during cutting-edge end pile installation considerably reduces the installation effort (load and torque) if pile penetration in one rotation equal to the cutting-edge depth. Inclusion of rotation during pile installation reduces the ultimate bearing resistance. However, if penetration of the cutting-edge end pile equal to the cutting-edge depth in one rotation, the reduction in ultimate resistance can be minimized. In comparing the cone and cutting-edge end piles installed with pressing and rotation, the least installation effort is observed in the cutting-edge end pile installed with penetration rate equal to the cutting-edge depth per rotation.

Moleciular Reorientation in the Presence of the Extended Diffusion of internal Rotation in Liquid Perdeuterotoluene

  • Doo-Soo Chung;Myung-Soo Kim;Jo-Woong Lee;Kook-Joe Shin
    • Bulletin of the Korean Chemical Society
    • /
    • v.4 no.1
    • /
    • pp.25-28
    • /
    • 1983
  • The effect of internal rotation of methyl group in liquid perdeuterotoluene on nuclear quadrupole relaxation of methyl deuterons is investigated. A model of a spherical diffusor undergoing rotational diffusion is extended to include the extended diffusion of internal rotation. The overall reorientational correlation time in the presence of internal rotation is explicitly given as an analytical function of the angular momentum correlation time. Also, the degree of inertial effect in the internal rotation is evaluated.

An Investigation of the Sample Rotation Effects on Suppression of Convective Flows in PGSE Diffusion NMR Experiments

  • Kim, Minkyoung;Chung, Kee-Choo
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.20 no.2
    • /
    • pp.61-65
    • /
    • 2016
  • Undesirable convective flow in an NMR tube inhibits the accurate measurement of diffusion coefficients by NMR spectroscopy. To minimize the convection effects, various methods have been suggested, and it has been known that the use of sample rotation can be useful. However, it has not been clearly examined that the convection suppressing effect of the sample rotation under the different spinning speeds. In this study, the relation between convective flow and the sample rotation was investigated using PGSE NMR diffusion experiments to reveal the feasibility for controlling the convective flow in an NMR tube by sample rotation itself. The viscosity effect was also examined using solvents with four different viscosities, acetone-$d_6$ chloroform-d, pyridine-$d_5$, and $D_2O$. The sample rotation showed apparent convection suppressing effects at all temperature range for the low viscosity solvents, acetone-$d_6$ and chloroform-d, even at the faster than 5 Hz spinning rate. The similar patterns were also observed for pyridine-$d_5$ and $D_2O$, which have higher viscosity. This effect was observed even at high temperatures where convective flow arises conspicuously.

ON RIVLIN-ERICKSON ELASTICO-VISCOUS FLUID HEATED AND SOLUTED FROM BELOW IN THE PRESENCE OF COMPRESSIBILITY, ROTATION AND HALL CURRENTS

  • Gupta, Urvashi;Sharma, Gaurav
    • Journal of applied mathematics & informatics
    • /
    • v.25 no.1_2
    • /
    • pp.51-66
    • /
    • 2007
  • A layer of compressible, rotating, elastica-viscous fluid heated & soluted from below is considered in the presence of vertical magnetic field to include the effect of Hall currents. Dispersion relation governing the effect of viscoelasticity, salinity gradient, rotation, magnetic field and Hall currents is derived. For the case of stationary convection, the Rivlin-Erickson fluid behaves like an ordinary Newtonian fluid. The compressibility, stable solute gradient, rotation and magnetic field postpone the onset of thermosolutal instability whereas Hall currents are found to hasten the onset of thermosolutal instability in the absence of rotation. In the presence of rotation, Hall currents postpone/hasten the onset of instability depending upon the value of wavenumbers. Again, the dispersion relation is analyzed numerically & the results depicted graphically. The stable solute gradient and magnetic field (and corresponding Hall currents) introduce oscillatory modes in the system which were non-existent in their absence. The case of overstability is discussed & sufficient conditions for non-existence of overstability are derived.

Effect of axial rotation on oscillatory thermocapillary flow in half-zone of high Prandtl number fluid (높은 Prandtl 수 유체에서 축회전이 열모세관 유동의 진동에 미치는 영향)

  • Jeon, Seung-Won;Lee, Kyu-Jung
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2248-2253
    • /
    • 2008
  • A numerical study on oscillatory thermocapillary flow in half-zone has performed to understand the effect of axial rotation. 2d unsteady code is developed to observe the onset of oscillation. 2cs Silicone oil with Prandtl number of 26.5 is used as a working fluid. The critical temperature difference at onset of oscillation is investigated under the different aspect ratios and rotation modes. It is shown that the onset of oscillation is delayed when aspect ratio reduces and rotating speed increases. The oscillatory flow is strongly reduced under top rotation and co-rotation modes, while it is augmented under bottom rotation and counter-rotation modes. It is thought that interaction between return flow and bottom wall is important to explain the oscillatory flow.

  • PDF

The effect of rotation on piezo-thermoelastic medium using different theories

  • Othman, Mohamed I.A.;Ahmed, Ethar A.A.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.4
    • /
    • pp.649-665
    • /
    • 2015
  • The present paper attempts to investigate the propagation of plane waves in generalized piezo-thermoelastic medium under the effect of rotation. The normal mode analysis is used to obtain the expressions for the displacement components, the temperature, the stress and the strain components. Comparisons are made with the results predicted by different theories (Coupled theory, Lord-Schulman, Green-Lindsay) in the absence and presence of rotation.

Effect of the rotation on the thermal stress wave propagation in non-homogeneous viscoelastic body

  • Al-Basyouni, K.S.;Ghandourah, E.;Mostafa, H.M.;Algarni, Ali
    • Geomechanics and Engineering
    • /
    • v.21 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • In this article, an analytical solution for the effect of the rotation on thermo-viscoelastic non-homogeneous medium with a spherical cavity subjected to periodic loading is studied. The distribution of displacements, temperature, redial stress, and hoop stress in non-homogeneous medium, in the context of generalized thermo-viscoelasticity using the GL theory, is discussed and obtained. The results are displayed graphically to illustrate the effect of the rotation. Comparisons with the previous work in the absence of rotation and viscosity are made.

Micropolar thermoelastic medium with voids under the effect of rotation concerned with 3PHL model

  • Othman, Mohamed I.A.;Alharbi, Amnah M.;Al-Autabi, Al-Anoud M. Kh.
    • Geomechanics and Engineering
    • /
    • v.21 no.5
    • /
    • pp.447-459
    • /
    • 2020
  • This paper aims to investigate the effect of rotation on a micropolar thermoelastic medium with voids problem. The problem is assessed according to three-phase-lag model. The normal mode analysis used to obtain the analytical expressions of the considered variables. The non-dimensional displacement, temperature, Micro rotation, the change in the volume fraction field, and stress of the material are obtained and illustrated graphically. Comparisons are made with the results predicted by two theories; namely three- phase-lag model (3PHL) and Green-Naghdi theory of type III (G-N III). The considered variables were plotted for different values of the rotation parameter, the phase-lag of heat flux and the phase-lag of temperature. The numerical results reveal that the rotation and the phase-lag times significantly influence the distribution of the field quantities. Some particular cases of interest are deduced from the present investigation.