• Title/Summary/Keyword: transversely isotropic thermoelastic

Search Result 30, Processing Time 0.024 seconds

Thermomechanical interactions in transversely isotropic magneto thermoelastic solid with two temperatures and without energy dissipation

  • Lata, Parveen;Kaur, Iqbal
    • Steel and Composite Structures
    • /
    • v.32 no.6
    • /
    • pp.779-793
    • /
    • 2019
  • The purpose of this research paper is to depict the thermomechanical interactions in transversely isotropic magneto thermoelastic solid with two temperatures and without energy dissipation in generalized LS theories of thermoelasticity. The Laplace and Fourier transform techniques have been used to find the solution of the problem. The displacement components, stress components, and conductive temperature distribution with the horizontal distance are computed in the transformed domain and further calculated in the physical domain numerically. The effect of two temperature and relaxation time are depicted graphically on the resulting quantities.

Thermomechanical interactions in a transversely isotropic magneto thermoelastic solids with two temperatures and rotation due to time harmonic sources

  • Lata, Parveen;Kaur, Iqbal
    • Coupled systems mechanics
    • /
    • v.8 no.3
    • /
    • pp.219-245
    • /
    • 2019
  • The present research deals in two dimensional (2D) transversely isotropic magneto generalized thermoelastic solid without energy dissipation and with two temperatures due to time harmonic sources in Lord-Shulman (LS) theory of thermoelasticity. The Fourier transform has been used to find the solution of the problem. The displacement components, stress components and conductive temperature distribution with the horizontal distance are calculated in transformed domain and further calculated in the physical domain numerically. The effect of two temperature are depicted graphically on the resulting quantities.

Thermomechanical interactions in a transversely isotropic thermoelastic media with diffusion due to inclined load

  • Parveen Lata;Heena
    • Structural Engineering and Mechanics
    • /
    • v.90 no.3
    • /
    • pp.263-272
    • /
    • 2024
  • This research deals with the study of two-dimensional deformation in transversely isotropic thermoelastic diffusion medium. This investigation integrates the effect of diffusion and thermal effects in transversely isotropic thermoelastic solids under inclined load. Inclined load is taken as linear combination of normal load and tangential load. Laplace and Fourier transformation techniques are employed to transform the physical domain and then transformed solutions are inverted with the aid of numerical inversion techniques. Concentrated and distributed load are considered to exemplify its utility. Graphical representation of variation in displacement, stresses, temperature and concentration distribution with distance is depicted by taking inclination at different angles. Some particular cases are studied.

Deformation in transversely isotropic thermoelastic medium using new modified couple stress theory in frequency domain

  • Lata, Parveen;Kaur, Harpreet
    • Geomechanics and Engineering
    • /
    • v.19 no.5
    • /
    • pp.369-381
    • /
    • 2019
  • The objective of this paper is to study the two dimensional deformation in transversely isotropic thermoelastic medium without energy dissipation due to time harmonic sources using new modified couple stress theory, a continuum theory capable to predict the size effects at micro/nano scale. The couple stress constitutive relationships have been introduced for transversely isotropic thermoelastic medium, in which the curvature tensor is asymmetric and the couple stress moment tensor is symmetric. Fourier transform technique is applied to obtain the solutions of the governing equations. Assuming the deformation to be harmonically time-dependent, the transformed solution is obtained in the frequency domain. The application of a time harmonic concentrated and distributed sources have been considered to show the utility of the solution obtained. The displacement components, stress components, temperature change and couple stress are obtained in the transformed domain. A numerical inversion technique has been used to obtain the solutions in the physical domain. The effects of angular frequency are depicted graphically on the resulted quantities.

Effect of length scale parameters on transversely isotropic thermoelastic medium using new modified couple stress theory

  • Lata, Parveen;Kaur, Harpreet
    • Structural Engineering and Mechanics
    • /
    • v.76 no.1
    • /
    • pp.17-26
    • /
    • 2020
  • The objective of this paper is to study the deformation in transversely isotropic thermoelastic solid using new modified couple stress theory subjected to ramp-type thermal source and without energy dissipation. This theory contains three material length scale parameters which can determine the size effects. The couple stress constitutive relationships are introduced for transversely isotropic thermoelastic solid, in which the curvature (rotation gradient) tensor is asymmetric and the couple stress moment tensor is symmetric. Laplace and Fourier transform technique is applied to obtain the solutions of the governing equations. The displacement components, stress components, temperature change and couple stress are obtained in the transformed domain. A numerical inversion technique has been used to obtain the solutions in the physical domain. The effects of length scale parameters are depicted graphically on the resulted quantities. Numerical results show that the proposed model can capture the scale effects of microstructures.

Effect of time harmonic sources on transversely isotropic thermoelastic thin circular plate

  • Lata, Parveen;Kaur, Iqbal
    • Geomechanics and Engineering
    • /
    • v.19 no.1
    • /
    • pp.29-36
    • /
    • 2019
  • The present research deals with the deformation in transversely isotropic thin circular thermoelastic rotating plate due to time-harmonic sources. Frequency effect in the presence of rotation and two temperature is studied under thermally insulated as well as isothermal boundaries. The Hankel transform technique is used to find a solution to the problem. The displacement components, stress components, and conductive temperature distribution with the radial distance are computed in the transformed domain and further calculated in the physical domain using numerical inversion techniques. Some specific cases are also figured out from the current research.

Effect of thermal laser pulse in transversely isotropic Magneto-thermoelastic solid due to Time-Harmonic sources

  • Lata, Parveen;Kaur, Iqbal;Singh, Kulvinder
    • Coupled systems mechanics
    • /
    • v.9 no.4
    • /
    • pp.343-358
    • /
    • 2020
  • The present research deals with the time-harmonic deformation in transversely isotropic magneto thermoelastic solid with two temperature (2T), rotation due to inclined load and laser pulse. Generalized theory of thermoelasticity has been formulated for this mathematical model. The entire thermo-elastic medium is rotating with uniform angular velocity and subjected to thermally insulated and isothermal boundaries. The inclined load is supposed to be a linear combination of a normal load and a tangential load. The Fourier transform techniques have been used to find the solution to the problem. The displacement components, stress components, and conductive temperature distribution with the horizontal distance are computed in the transformed domain and further calculated in the physical domain using numerical inversion techniques. The effect of angle of inclination of normal and tangential load for Green Lindsay Model and time-harmonic source for Lord Shulman model is depicted graphically on the resulting quantities.

Axisymmetric deformation in transversely isotropic thermoelastic medium using new modified couple stress theory

  • Lata, Parveen;Kaur, Harpreet
    • Coupled systems mechanics
    • /
    • v.8 no.6
    • /
    • pp.501-522
    • /
    • 2019
  • The present study is concerned with the thermoelastic interactions in a two dimensional axisymmetric problem in transversely isotropic thermoelastic solid using new modified couple stress theory without energy dissipation and with two temperatures. The Laplace and Hankel transforms have been employed to find the general solution to the field equations. Concentrated normal force, normal force over the circular region, concentrated thermal source and thermal source over the circular region have been taken to illustrate the application of the approach. The components of displacements, stress, couple stress and conductive temperature distribution are obtained in the transformed domain. The resulting quantities are obtained in the physical domain by using numerical inversion technique. The effect of two temperature varying by taking different values for the two temperature on the components of normal stress, tangential stress, conductive temperature and couple stress are depicted graphically.

Effect of inclined load on transversely isotropic magneto thermoelastic rotating solid with time harmonic source

  • Lata, Parveen;Kaur, Iqbal
    • Advances in materials Research
    • /
    • v.8 no.2
    • /
    • pp.83-102
    • /
    • 2019
  • The present research deals with the time harmonic deformation in transversely isotropic magneto thermoelastic solid with two temperature (2T), rotation and without energy dissipation due to inclined load. Lord-Shulman theory has been formulated for this mathematical model. The entire thermo-elastic medium is rotating with a uniform angular velocity. The Fourier transform techniques have been used to find the solution to the problem. The displacement components, stress components and conductive temperature distribution with the horizontal distance are computed in the transformed domain and further calculated in the physical domain using numerical inversion techniques. The effect of time harmonic source and rotation is depicted graphically on the resulting quantities.

Plane wave propagation in transversely isotropic magneto-thermoelastic rotating medium with fractional order generalized heat transfer

  • Lata, Parveen;Kaur, Iqbal
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.3
    • /
    • pp.191-218
    • /
    • 2019
  • The aim of the present investigation is to examine the propagation of plane waves in transversely isotropic homogeneous magneto thermoelastic rotating medium with fractional order heat transfer. It is found that, for two dimensional assumed model, there exist three types of coupled longitudinal waves (quasi-longitudinal, quasi-transverse and quasi-thermal waves). The wave characteristics such as phase velocity, attenuation coefficients, specific loss, penetration depths, energy ratios and amplitude ratios of various reflected and transmitted waves are computed and depicted graphically. The conservation of energy at the free surface is verified. The effects of rotation and fractional order parameter by varying different values are represented graphically.