References
- Abd-Alla, A.-E.-N.N. and Alshaikh, F. (2015), "The Mathematical model of reflection of plane waves in a transversely isotropic magneto-thermoelastic medium under rotation", New Developments Pure Appl. Math., 282-289.
- Ailawalia, P., Kumar, S. and Pathania, D. (2010), "Effect of rotation in a generalized thermoelastic medium with two temperature under hydrostatic initial stress and gravity", Multidiscipl. Model. Mater. Struct. (Emerald), 6(2), 185-205. https://doi.org/10.1108/15736101011067984
- Atmane, H.A., Tounsi, A., Bernard, F. and Mahmoud, S. (2015), "A computational shear displacement model for vibrational analysis of functionally graded beams with porosities", Steel Compos. Struct., Int. J., 19(2), 369-384. https://doi.org/10.12989/scs.2015.19.2.369
- Banik, S. and Kanoria, M. (2012), "Effects of three-phase-lag on two-temperature generalized thermoelasticity for infinite medium with spherical cavity", Appl. Math. Mech., 33(4), 483-498. https://doi.org/10.1007/s10483-012-1565-8
- Bousahla, A.A., Benyoucef, S., Tounsi, A. and Mahmoud, S. (2016), "On thermal stability of plates with functionally graded coefficient of thermal expansion", Struct. Eng. Mech., Int. J., 60(2), 313-335. https://doi.org/10.12989/sem.2016.60.2.313
- Chauthale, S. and Khobragade, N.W. (2017), "Thermoelastic response of a thick circular plate due to heat generation and its thermal stresses", Global J. Pure Appl. Math., 7505-7527.
- Dhaliwal, R. and Singh, A. (1980), Dynamic Coupled Thermoelasticity, Hindustan Publication Corporation, New Delhi, India.
- Ezzat, M. and AI-Bary, A. (2016), "Magneto-thermoelectric viscoelastic materials with memory dependent derivatives involving two temperature", Int. J. Appl. Electromagnet. Mech., 50(4), 549-567. https://doi.org/10.3233/JAE-150131
- Ezzat, M. and AI-Bary, A. (2017), "Fractional magnetothermoelastic materials with phase lag Green-Naghdi theories", Steel Compos. Struct., Int. J., 24(3), 297-307. https://doi.org/10.12989/scs.2017.24.3.297
- Ezzat, M.A. and El-Bary, A.A. (2017), "A functionally graded magneto-thermoelastic half space with memory-dependent derivatives heat transfer", Steel Compos. Struct., Int. J., 25(2), 177-186. https://doi.org/10.12989/scs.2017.25.2.177
- Ezzat, M.A., El-Karamany, A.S. and Ezzat, S.M. (2012), "Twotemperature theory in magneto-thermoelasticity with fractional order dual-phase-lag heat transfer", Nuclear Eng. Des., 252, 267-277. https://doi.org/10.1016/j.nucengdes.2012.06.012
- Ezzat, M., El-Karamany, A. and El-Bary, A. (2015), "Thermoviscoelastic materials with fractional relaxation operators", Appl. Math. Model., 39(23), 7499-7512. https://doi.org/10.1016/j.apm.2015.03.018
- Ezzat, M., El-Karamany, A. and El-Bary, A. (2016), "Generalized thermoelasticity with memory-dependent derivatives involving two temperatures", Mech. Adv. Mater. Struct., 23(5), 545-553. https://doi.org/10.1080/15376494.2015.1007189
- Ezzat, M.A., El-Karamany, A.S. and El-Bary, A.A. (2017a), "Twotemperature theory in Green-Naghdi thermoelasticity with fractional phase-lag heat transfer", Microsyst. Technol., 24(2), 951-961. https://doi.org/10.1007/s00542-017-3425-6
- Ezzat, M.A., Karamany, A.S. and El-Bary, A.A. (2017b), "Thermoelectric viscoelastic materials with memory-dependent derivative", Smart Struct. Syst., Int. J., 19(5), 539-551. https://doi.org/10.12989/sss.2017.19.5.539
- Hassan, M., Marin, M., Ellahi, R. and Alamri, S. (2018), "Exploration of convective heat transfer and flow characteristics synthesis by Cu-Ag/water hybrid-nanofluids", Heat Transfer Res., 49(18), 1837-1848. https://doi.org/10.1615/HeatTransRes.2018025569
- Honig, G.H. and Hirdes, U. (1984), "A method for the inversion of Laplace Transform", J. Comput. Appl. Math,, 10, 113-132. https://doi.org/10.1016/0377-0427(84)90075-X
- Kaur, I. and Lata, P. (2019a), "Effect of hall current on propagation of plane wave in transversely isotropic thermoelastic medium with two temperature and fractional order heat transfer", SN Appl. Sci., 1, 900. https://doi.org/10.1007/s42452-019-0942-1
- Kaur, I. and Lata, P. (2019b), "Transversely isotropic thermoelastic thin circular plate with constant and periodically varying load and heat source", Int. J. Mech. Mater. Eng., 14(10), 1-13. https://doi.org/10.1186/s40712-019-0107-4
- Kumar, R., Sharma, N. and Lata, A.P. (2016a), "Effects of Hall current in a transversely isotropic magnetothermoelastic with and without energy dissipation due to normal force", Struct. Eng. Mech., Int. J., 57(1), 91-103. https://doi.org/10.12989/sem.2016.57.1.091
- Kumar, R., Sharma, N. and Lata, P. (2016b), "Thermomechanical interactions due to hall current in transversely isotropic thermoelastic with and without energy dissipation with two temperatures and rotation", J. Solid Mech., 8(4), 840-858.
- Kumar, R., Sharma, N. and Lata, P. (2016c), "Thermomechanical interactions in transversely isotropic magnetothermoelastic medium with vacuum and with and without energy dissipation with combined effects of rotation, vacuum and two temperatures", Appl. Math. Model., 40, 6560-6575. https://doi.org/10.1016/j.apm.2016.01.061
- Kumar, R., Sharma, N., Lata, P. and Abo-Dahab, A.S. (2017), "Rayleigh waves in anisotropic magnetothermoelastic medium", Coupl. Syst. Mech., Int. J., 6(3), 317-333. https://doi.org/10.12989/csm.2017.6.3.317
- Kumar, R., Kaushal, P. and Sharma, R. (2018), "Transversely isotropic magneto-visco thermoelastic medium with vacuum and without energy dissipation", J. Solid Mech., 10(2), 416-434.
- Lata, P. (2018a), "Effect of energy dissipation on plane waves in sandwiched layered thermoelastic medium", Steel Compos. Struct., Int. J., 27(4), 439-451. https://doi.org/10.12989/scs.2018.27.4.439
- Lata, P. (2018b), "Reflection and refraction of plane waves in layered nonlocal elastic and anisotropic thermoelastic medium", Struct. Eng. Mech., Int. J., 66(1), 113-124. https://doi.org/10.12989/sem.2018.66.1.113
- Lata, P. and Kaur, I. (2018), "Effect of hall current in Transversely Isotropic magnetothermoelastic rotating medium with fractional order heat transfer due to normal force", Adv. Mater. Res., Int. J., 7(3), 203-220. https://doi.org/10.12989/amr.2018.7.3.203
- Lata, P. and Kaur, I. (2019a), "Transversely isotropic thick plate with two temperature and GN type-III in frequency domain", Coupl. Syst. Mech., Int. J., 8(1), 55-70. http://dx.doi.org/10.12989/csm.2019.8.1.055
- Lata, P. and Kaur, I. (2019b), "Thermomechanical Interactions in Transversely Isotropic Thick Circular Plate with Axisymmetric Heat Supply", Struct. Eng. Mech., Int. J., 69(6), 607-614. http://dx.doi.org/10.12989/sem.2019.69.6.607
- Lata, P. and Kaur, I. (2019c), "Transversely isotropic magneto thermoelastic solid with two temperature and without energy dissipation in generalized thermoelasticity due to inclined load", SN Appl. Sci., 1, 426. https://doi.org/10.1007/s42452-019-0438-z
- Lata, P. and Kaur, I. (2019d), "Effect of rotation and inclined load on transversely isotropic magneto thermoelastic solid", Struct. Eng. Mech., Int. J., 70(2), 245-255. http://dx.doi.org/10.12989/sem.2019.70.2.245
- Lata, P., Kumar, R. and Sharma, N. (2016), "Plane waves in an anisotropic thermoelastic", Steel Compos. Struct., Int. J., 22(3), 567-587. http://dx.doi.org/10.12989/scs.2016.22.3.567
- Lord, H.W. and Shulman, A.Y. (1967), "The Generalized Dynamical Theory of Thermoelasticity", J. Mech. Phys. Solids, 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5
- Mahmoud, S. (2012), "Influence of rotation and generalized magneto-thermoelastic on Rayleigh waves in a granular medium under effect of initial stress and gravity field", Meccanica, 47, 1561-1579. https://doi.org/10.1007/s11012-011-9535-9
- Mahmoud, S.R., Abd-Alla, A.M. and El-Sheikh, M.A. (2011), "Effect of the rotation on wave motion through cylindrical bore in a micropolar porous medium", Int. J. Modern Phys. B, 25(20), 2713-2728. https://doi.org/10.1142/S0217979211101739
- Mahmoud, S.R., Marin, M. and Al-Basyouni, K.S. (2015), "Effect of the initial stress and rotation on free vibrations in transversely isotropic human long dry bone", Analele Universitatii" Ovidius" Constanta-Seria Matematica, 171-184. https://doi.org/10.1142/S0217979211101739
- Marin, M. (1996), "Generalized solutions in elasticity of micropolar bodies with voids", Revista de la Academia Canaria de Ciencias, VIII, 8(1), 101-106.
- Marin, M. (1997), "Cesaro means in thermoelasticity of dipolar bodies", Acta Mechanica, 122(1-4), 155-168. https://doi.org/10.1007/BF01181996
- Marin, M. (1998), "Contributions on uniqueness in thermoelastodynamics on bodies with voids", Revista Ciencias Matematicas (Havana), 16(2), 101-109.
- Marin, M. (1999), "An evolutionary equation in thermoelasticity of dipolar bodies", J. Math. Phys., 40(3), 1391-1399. https://doi.org/10.1063/1.532809
- Marin, M. (2009), "On the minimum principle for dipolar materials with stretch", Nonlinear Anal. Real World Appl., 10(3), 1572-1578. https://doi.org/10.1016/j.nonrwa.2008.02.001
- Marin, M. (2010), "A partition of energy in thermoelasticity of microstretch bodies", Nonlinear Anal.: Real World Appl., 11(4), 2436-2447. https://doi.org/10.1016/j.nonrwa.2009.07.014
- Marin, M. and Craciun, E. (2017), "Uniqueness results for a boundary value problem in dipolar thermoelasticity to model composite materials", Compos. Part B: Eng., 126, 27-37. https://doi.org/10.1016/j.compositesb.2017.05.063
- Marin, M. and O chsner, A. (2017), "The effect of a dipolar structure on the Holder stability in Green-Naghdi thermoelasticity", Continuum Mech. Thermodyn., 29, 1365-1374. https://doi.org/10.1007/s00161-017-0585-7
- Marin, M., Agarwal, R.P. and Mahmoud, S.R. (2013), "Modeling a microstretch thermoelastic body with two temperatures", Abstract Appl. Anal., 2013, 1-7. http://dx.doi.org/10.1155/2013/583464
- Marin, M., Craciun, E. and Pop, N. (2016), "Considerations on mixed initial-boundary value problems for micropolar porous bodies", Dyn. Syst. Appl., 25(1-2), 175-196.
- Marin, M., Ellahi, R. and Chirila, A. (2017), "On solutions of Saint-Venant's problem for elastic dipolar bodies with voids", Carpathian J. Math., 33(2), 219-232. https://doi.org/10.37193/CJM.2017.02.09
- Menasria, A., Bouhadra, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct. Int. J., 25(2), 157-175. https://doi.org/10.12989/scs.2017.25.2.157
- Meradjah, M., Kaci, A., Houari, M.S., Tounsi, A. and Mahmoud, S. (2015), "A new higher order shear and normal deformation theory for functionally graded beams", Steel Compos. Struct., Int. J., 18(3), 793-809. https://doi.org/10.12989/scs.2015.18.3.793
- Othman, M. and Marin, M. (2017), "Effect of thermal loading due to laser pulse on thermoelastic porous medium under G-N theory", Results Phys., 7, 3863-3872. https://doi.org/10.1016/j.rinp.2017.10.012
- Press, W.T. (1986), Numerical Recipes in Fortran, Cambridge University Press Cambridge.
- Schoenberg, M. and Censor, D. (1973), "Elastic waves in rotating media", Quarterly Appl. Math., 31, 115-125. https://doi.org/10.1090/qam/99708
- Sharma, N., Kumar, R. and Lata, P. (2015), "Disturbance due to inclined load in transversely isotropic thermoelastic medium with two temperatures and without energy dissipation", Mater. Phys. Mech., 22, 107-117.
- Singh, B. and Yadav, A.K. (2012), "Plane waves in a transversely isotropic rotating magnetothermoelastic medium", J. Eng. Phys. Thermophys., 85(5), 1226-1232. https://doi.org/10.1007/s10891-012-0765-z
- Slaughter, W.S. (2002). The Linearised Theory of Elasticity. Birkhausar.
Cited by
- Modeling of GN type III with MDD for a thermoelectric solid subjected to a moving heat source vol.23, pp.4, 2019, https://doi.org/10.12989/gae.2020.23.4.393
- Transient memory response of a thermoelectric half-space with temperature-dependent thermal conductivity and exponentially graded modulii vol.38, pp.4, 2021, https://doi.org/10.12989/scs.2021.38.4.447
- A study on thermo-elastic interactions in 2D porous media with-without energy dissipation vol.38, pp.5, 2019, https://doi.org/10.12989/scs.2021.38.5.523
- A dual-phase-lag theory of thermal wave in a porothermoelastic nanoscale material by FEM vol.79, pp.1, 2019, https://doi.org/10.12989/sem.2021.79.1.001
- Analytical solutions of the temperature increment in skin tissues caused by moving heating sources vol.40, pp.4, 2019, https://doi.org/10.12989/scs.2021.40.4.511