DOI QR코드

DOI QR Code

폴리우레탄 기반 복합 섬유의 기계적, 전기적 특성

Mechanical and Electrical Characteristics of Polyurethane-Based Composite Fibers

  • Jang, Hoyoung (School of Mechanical Engineering, Sungkyunkwan University) ;
  • Lee, Hyeon-Jong (School of Mechanical Engineering, Sungkyunkwan University) ;
  • Suk, Ji Won (School of Mechanical Engineering, Sungkyunkwan University)
  • 투고 : 2019.10.27
  • 심사 : 2020.03.04
  • 발행 : 2020.04.30

초록

소프트 로봇 및 웨어러블 소자는 대변형 및 큰 유연성을 요구한다. 이에 따라, 소프트 로봇 또는 웨어러블 소자에 부착하여 사용할 수 있는 신축성 스트레인 센서의 필요성이 대두되고 있다. 본 연구에서는 폴리우레탄과 은나노꽃입자를 혼합하여 신축성과 전기전도성을 갖는 복합 섬유를 제조하였다. 이러한 복합 섬유는 스트레인에 따라 섬유의 저항이 변하게 되어 신축성 스트레인 센서로 가능성이 높다. 복합 섬유를 신축성 스트레인 센서로 활용하기 위해서, 복합 섬유의 기계적, 전기적 특성을 측정, 분석하였다.

Soft robotics and wearable devices require large motions and flexibility. In this regard, there is a demand for developing stretchable strain sensors which can be attached to the soft robots and wearable devices. In this work, we fabricated stretchable and electrically conductive composite fibers by combining polyurethane (PU) and silver nanoflowers (AgNFs). The PU/AgNF composite fibers showed the change of the resistance as a function of the applied strain, demonstrating the potential for stretchable strain sensors in soft robotics and wearable devices. The mechanical and electrical characteristics of the composite fibers were measured and analyzed to use the composite fibers for stretchable strain sensors.

키워드

참고문헌

  1. Kim, H.I., Han, M.W., Song, S.H., and Ahn, S.H., "Soft Morphing Hand Driven by SMA Tendon Wire," Composites Part B: Engineering, Vol. 105, 2016, pp. 138-148. https://doi.org/10.1016/j.compositesb.2016.09.004
  2. Brochu, P., and Pei, Q., "Advances in Dielectric Elastomers for Actuators and Artificial Muscles," Macromolecular Rapid Communications, Vol. 31, No. 1, 2009, pp. 10-36. https://doi.org/10.1002/marc.200900425
  3. Jo, C., Pugal, D., Oh, I.K., Kim, K.J., and Asaka, K., "Recent Advances in Ionic Polymer-metal Composite Actuators and Their Modeling and Applications," Progress in Polymer Science, Vol. 38, No. 7, 2013, pp. 1037-1066. https://doi.org/10.1016/j.progpolymsci.2013.04.003
  4. Haines, C.S., Lima, M.D., Li, N., Spinks, G.M., Foroughi, J., Madden, J.D.W., Kim, S.H., Fang, S., Andrade, M.J., Göktepe, F., Goktepe, O., Mirvakili, S.M., Naficy, S., Lepro, X., Oh, J., Kozlov, M.E., Kim, S.J., Xu, X., Swedlove, B.J., Wallace, G.G., and Baughman, R.H., "Artificial Muscles from Fishing Line and Sewing Thread," Science, Vol. 343, No. 6173, 2014, pp. 868-872. https://doi.org/10.1126/science.1246906
  5. Piao, C., Jang, H., Lim, T., Kim, H., Choi, H.R., Hao, Y., and Suk, J.W., "Enhanced Dynamic Performance of Twisted and Coiled Soft Actuators Using Graphene Coating", Composites Part B: Engineering, Vol. 178, 2019, pp. 107499. https://doi.org/10.1016/j.compositesb.2019.107499
  6. Piao, C., and Suk, J.W., "Enhanced Cooling Performance of Polymer Actuators Using Carbon Nanotube Composites", Composites Research, Vol. 30, No. 2, 2017, pp. 165-168. https://doi.org/10.7234/composres.2017.30.2.165
  7. Yang, Y., Ding, S., Araki, T., Jiu, J., Sugahara, T., Wang, J., Vanfleteren, J., Sekitani, T., and Suganuma, K., "Facile Fabrication of Stretchable Ag Nanowire/polyurethane Electrodes Using High Intensity Pulsed Light," Nano Research, Vol. 9, No. 2, 2016, pp. 401-414. https://doi.org/10.1007/s12274-015-0921-9
  8. Li, X., Hua, T., and Xu, B., "Electrochemical Properties of a Yarn Strain Sensor with Graphene-sheath/polyurethane-core," Carbon, Vol. 118, 2017, pp. 686-698. https://doi.org/10.1016/j.carbon.2017.04.002
  9. Lee, H., Glasper, M.J., Li, X., Nychka, J.A., Batcheller, J., Chung, H.J., and Chen, Y., "Preparation of Fabric Strain Sensor Based on Graphene for Human Motion Monitoring," Journal of Materials Science, Vol. 53, 2018, pp. 9026-9033. https://doi.org/10.1007/s10853-018-2194-7
  10. Liu, H., Gao, H., and Hu, G., "Highly Sensitive Natural Rubber/pristine Graphene Strain Sensor Prepared by a Simple Method", Composites Part B: Engineering, Vol. 171, 2019, pp. 138-145. https://doi.org/10.1016/j.compositesb.2019.04.032
  11. Guo, X., Huang, Y., Zhao, Y., Mao, L., Gao, L., Pan, W., Zhang, Y., and Liu, P., "Highly Stretchable Strain Sensor Based on SWCNTs/CB Synergistic Conductive Network for Wearable Human-activity Monitoring and Recognition," Smart Materials and Structures, Vol. 26, 2017, pp. 095017. https://doi.org/10.1088/1361-665X/aa79c3
  12. Park, Y.B., Pham, G.T., Wang, B., and Kim, S.W., "Smart Structural Health Monitoring Using Carbon Nanotube Polymer Composites," Composites Research, Vol. 22, No. 6, 2009, pp. 1-6.
  13. Lin, L., Liu, S., Zhang, Q., Li, X., Ji, M., Deng, H., and Fu, Q., "Towards Tunable Sensitivity of Electrical Property to Strain for Conductive Polymer Composites Based on Thermoplastic Elastomer," ACS Applied Materials & Interfaces, Vol. 5, 2013, pp. 5815-5824. https://doi.org/10.1021/am401402x
  14. Park, H., Lim, S., Nguyen, D.D., and Suk, J.W., "Electrical Measurements of Thermally Reduced Graphene Oxide Powders under Pressure," Nanomaterials, Vol. 9, 2019, pp. 1387. https://doi.org/10.3390/nano9101387
  15. Kang, J., Lim, T., Jeong, M.H., and Suk, J.W., "Graphene Papers with Tailored Pore Structures Fabricated from Crumpled Graphene Spheres," Nanomaterials, Vol. 9, 2019, pp. 815. https://doi.org/10.3390/nano9060815
  16. Kaushik, V., Wu, S., Jang, H., Kang, J., Kim, K., and Suk, J.W., "Scalable Exfoliation of Bulk $MoS_2$ to Single- and Few-layers Using Toroidal Taylor Vortices," Nanomaterials, Vol. 8, 2018, pp.587. https://doi.org/10.3390/nano8080587
  17. Wei, Y., Chen, S., Li, F., Lin, Y., Zhang, Y., and Liu, L., "Highly Stable and Sensitive Paper-based Bending Sensor Using Silver Nanowires/layered Double Hydroxides Hybrids," Applied Materials & Interfaces, Vol. 7, 2015, pp. 14182-14191. https://doi.org/10.1021/acsami.5b03824
  18. Ma, R., Kang, B., Cho, S., Choi, M., and Baik, S., "Extraordinarily High Conductivity of Stretchable Fibers of Polyurethane and Silver Nanoflowers," ACS Nano, Vol. 9, No. 11, 2015, pp. 10876-10886. https://doi.org/10.1021/acsnano.5b03864
  19. Faseela, K.P., Singh, S., and Baik, S., "Hierarchically-structured Silver Nanoflowers for Highly Conductive Metallic Inks with Dramatically Reduced Filler Concentration," Scientific Reports, Vol. 6, 2016, pp. 34894. https://doi.org/10.1038/srep34894
  20. Wang, Y., Jia, Y., Zhou, Y., Wang, Y., Zheng, G., Dai, K., Liu, C., and Shen, C., "Ultra-stretchable, Sensitive and Durable Strain Sensors Based on Polydopamine Encapsulated Carbon Nanotubes/elastic Bands", Journal of Materials Chemistry C, Vol. 6, 2018, pp. 8160-8170. https://doi.org/10.1039/C8TC02702A

피인용 문헌

  1. 텍스타일형 스트레치 센서를 이용한 스마트 축구 양말 개발 -14~15세 여중생을 중심으로- vol.24, pp.3, 2020, https://doi.org/10.12940/jfb.2020.24.3.17
  2. 군인의 작업 실태에 기반한 웨어러블 로봇 개발 방향 탐색 vol.44, pp.6, 2020, https://doi.org/10.5850/jksct.2020.44.6.1178
  3. 신축성 접착 필름 위에 놓인 그래핀 종이의 주름 생성 vol.34, pp.2, 2021, https://doi.org/10.7234/composres.2021.34.2.108