• Title/Summary/Keyword: Soft robot

Search Result 103, Processing Time 0.033 seconds

Stable Walking of a Humanoid Robot under Soft Terrains (부드러운 지면에서의 휴머노이드 로봇의 안정보행)

  • Yoo, Young-Kuk;Kim, Jin-Geol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.4
    • /
    • pp.72-81
    • /
    • 2009
  • The purpose of this paper is to accomplish the stable humanoid robot walking on the soft terrains. The goal of the humanoid robot development is to make the robotic system perform some tasks in human living environment. However, human dwelling environments are very different from those of laboratories, where varied experiments are performed by the robot. In many cases, the ground is soft or elastic unlike the floor of a laboratory. When a robot walks on the soft ground, the sole of robot contacts the uneven ground. This results in unstable walking or walking may be impossible according to the degree of softness. Therefore, the algorithm that facilitates stable walking on the soft ground surface is required. In this paper, we suggest an algorithm that controls the ankle to help the robot walk stably on the soft ground using the humanoid robot (ISHURO-II) as a real model. A humanoid robot walking on the soft ground was simulated to verify that the proposed algorithm results in stable walking.

Design Development Process for Clothing of Upper Limb Assistive Wearable Soft Robot (상지 보조 소프트로봇의 의복화를 위한 디자인 개발 프로세스)

  • Hong, Yuhwa;Park, Juyeon;Nam, Yun Ja;Park, Daegeun;Cho, Kyu-Jin;Kim, Youn Joo
    • Fashion & Textile Research Journal
    • /
    • v.23 no.1
    • /
    • pp.106-117
    • /
    • 2021
  • This study proposes a design process for an upper limb assistive wearable soft robot that will enable the development of a clothing product for an upper limb assistive soft robot. A soft robot made of a flexible and soft material that compensates for the shortcomings of existing upper limb muscle strength assistive devices is being developed. Consequently, a clothing process of the upper limb assistive soft robot is required to increase the possibility of wearing such a device. The design process of the upper limb auxiliary soft robot is presented as follows. User analysis and required performance deduction-Soft robot design-upper limb assistive wearable soft robot prototype design and production-evaluation. After designing the clothing according to the design process, the design was revised and supplemented repeatedly according to the results of the clothing evaluation. In the post-production evaluation stage, the first and second prototypes were attached to actual subjects, and the second prototype showed better results. The developed soft robot evaluated if the functionality as a clothing function and the functionality as the utility of the device were harmonized. The convergence study utilized a process of reducing friction conducted through an understanding and cooperation between research fields. The results of this study can be used as basic data to establish the direction of prototype development in fusion research.

Real-Time Centralized Soft Motion Control System for High Speed and Precision Robot Control (고속 정밀 로봇 제어를 위한 실시간 중앙 집중식 소프트 모션 제어 시스템)

  • Jung, Il-Kyun;Kim, Jung-Hoon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.6
    • /
    • pp.295-301
    • /
    • 2013
  • In this paper, we propose a real-time centralized soft motion control system for high speed and precision robot control. The system engages EtherCAT as high speed industrial motion network to enable force based motion control in real-time and is composed of software-based master controller with PC and slave interface modules. Hard real-time control capacity is essential for high speed and precision robot control. To implement soft based real time control, The soft based master controller is designed using a real time kernel (RTX) and EtherCAT network, and servo processes are located in the master controller for centralized motion control. In the proposed system, slave interface modules just collect and transfer all sensor information of robot to the master controller via the EtherCAT network. It is proven by experimental results that the proposed soft motion control system has real time controllability enough to apply for various robot control systems.

Iterative Learning Control of Trajectory Generation for the Soft Actuator (궤적 생성 반복 학습을 통한 소프트 액추에이터 제어 연구)

  • Song, Eunjeong;Koo, Jachoon
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.1
    • /
    • pp.35-40
    • /
    • 2021
  • As the robot industry develops, industrial automation uses industrial robots in many parts of the manufacturing industry. However, rigidity-based conventional robots have a disadvantage in that they are challenging to use in environments where they grab fragile objects or interact with people because of their high rigidity. Therefore, researches on soft robot have been actively conducted. The soft robot can hold or manipulate fragile objects by using its compliance and has high safety even in an atypical environment with human interaction. However, these advantages are difficult to use in dynamic situations and control by the material's nonlinear behavior. However, for the soft robot to be used in the industry, control is essential. Therefore, in this paper, real-time PD control is applied, and the behavior of the soft actuator is analyzed by providing various waveforms as inputs. Also, Iterative learning control (ILC) is applied to reduce errors and select an ILC type suitable for soft actuators.

Smart Phone Robot Made of Smart Soft Composite (SSC)

  • Wang, Wei;Rodrigue, Hugo;Lee, Jang-Yeob;Han, Min-Woo;Ahn, Sung-Hoon
    • Composites Research
    • /
    • v.28 no.2
    • /
    • pp.52-57
    • /
    • 2015
  • Soft morphing robotics making use of smart material and based on biomimetic principles are capable of continuous locomotion in harmony with its environment. Since these robots do not use traditional mechanical components, they can be built to be light weight and capable of a diverse range of locomotion. This paper illustrates a flexible smart phone robot made of smart soft composite (SSC) with inchworm-like locomotion capable of two-way linear motion. Since rigid components are embedded within the robot, bending actuators with embedded rigid segments were investigated in order to obtain the maximum bending curvature. To verify the results, a simple mechanical model of this actuator was built and compared with experimental data. After that, the flexible robot was implemented as part of a smart phone robot where the rigid components of the phone were embedded within the matrix. Then, experiments were conducted to test the smart phone robot actuation force under different deflections to verify its load carrying capability. After that, the communication between the smart phone and robot controller was implemented and a corresponding phone application was developed. The locomotion of the smart phone robot actuated through an independent controller was also tested.

Robotics Projects at Pusan National University

  • Kwak, Seung-Chul;Sung, Ji-Hoon;Shim, In-Bo;Yoon, Joong-Sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.814-819
    • /
    • 2004
  • Soft engineering, based on symbiotic coexistence of human, machines and environment, is a new engineering field to explore the proper technology and the proper way of engineering. To explore soft engineering intents easily, various robot projects at Pusan National University conducted are presented. Thought experiment, interactive e-leaning, rapid prototyping engineering, biomimciry, tangibility, and ubiquity are concepts to be explored. Thought experiments projects are organized and performed, which include robot assembly game, Turing test, and robotics in science fiction. "Junk robot project" and "ubiquitous Pusan National University (u-PNU) project" have been organized. Also, bug robot project, interactive robot project, and interactive emotional robot projects are introduced. Weekly science fiction films are shown and discussed.

  • PDF

Development of Soft Wearable Robot for Assisting Supination and Pronation of Forearm (전완의 회외 및 회내를 보조하는 유연한 착용형 로봇 개발)

  • Kyu Bum Kim;Jihun Park;Kyu-Jin Cho
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.4
    • /
    • pp.359-366
    • /
    • 2023
  • In order to fully utilize the functions of the hand which is the end effector of the upper limb, other parts of the upper limb have to perform their own roles. Among them, the pronation and supination of the forearm, which allows the hand to rotate along the longitudinal direction of the forearm, play an important role in activities of daily living. In this paper, a soft wearable robot that assists the pronation and supination of the forearm for individuals with weakened or lost upper limb function is proposed. The wearable robot consists of an anchoring part with polymer (wrist strap, elbow strap), a tendon with a belt and wire, and an actuation module. It was developed based on the requirements with respect to friction of anchoring part, forearm compression, and friction of the tendon. It was confirmed that these requirements were satisfied through literature review and experiments. Since all components exist within the forearm when worn, it is expected to be easy to combine with the already developed soft wearable robots for the hand, wrist, elbow, and shoulder.

Implementation of a Spring Backboned Soft Arm Emulating Human Gestures (인간 동작 표현용 스프링 백본 구조 소프트 암의 구현)

  • Yoon, Hyun-Soo;Choi, Jae-Yeon;Oh, Se-Min;Lee, Byeong-Ju;Yoon, Ho-Sup;Cho, Young-Jo
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.2
    • /
    • pp.65-75
    • /
    • 2012
  • This study deals with the design of a spring backboned soft arm, which will be employed for generation of human gesture as an effective means of Human Robot interaction. The special features of the proposed mechanism are the light weight and the flexibility of the whole mechanism by using a spring backbone. Thus, even in the case of collision with human, this device is able to absorb the impact structurally. The kinematics and the design for the soft arm are introduced. The performance of this mechanism was shown through experiment emulating several human gestures expressing human emotion and some service contents. Finally, this soft arm was implemented as the wing mechanism of a penguin robot.

A Study on Control of Stable Grasping Motion for Finger Robot (손가락 로봇의 안정 파지 운동 제어에 관한 연구)

  • Choi, Jong-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.428-437
    • /
    • 2006
  • This paper attempts to derive and analyze the dynamic system of grasping a rigid object by means of two multi-degrees-of-freedom robot flngers with soft and deformable tips. It is shown firstly that a set of differential equation describing dynamics system of the manipulators and object together with geometric constraint of tight area-contacts is formulated by Lagrange's equation. It is shown secondly that the problems of controlling both the forces of pressing object and the rotation angle of the object under the geometric constraints are discussed. In this paper. the control method for dynamic stable grasping and enhancing dexterity in manipulating things is proposed. It is illustrated by computer simulation that the control system gives the performance improvement in the dynamic stable grasping of the dual fingers robot with soft tips.