DOI QR코드

DOI QR Code

OFDM 통신시스템을 위한 radix-22 MDF IFFT의 메모리 감소 기법

Memory Reduction Method of Radix-22 MDF IFFT for OFDM Communication Systems

  • Cho, Kyung-Ju (Department of Electronic Engineering Wonkwang University)
  • 투고 : 2020.01.16
  • 심사 : 2020.02.17
  • 발행 : 2020.02.28

초록

OFDM 기반 초고속 통신시스템을 위한 IFFT/FFT 프로세서는 저면적 저전력이면서 데이터 처리량이 높고 프로세싱 지연이 적어야 한다. 따라서, 파이프라인과 병렬처리를 적용한 radix-2k 알고리즘 기반 MDF(multipath delay feedback) 구조가 적합하다. 기존의 MDF 구조에서 입력신호의 워드길이에 비례하여 커지는 피드백 메모리는 면적과 전력소모가 크다. 본 논문에서는 OFDM 응용을 위한 radix-22 MDF IFFT 프로세서의 피드백 메모리 크기 감소 방법을 제안한다. MDF 구조에서 첫 두 스테이지의 피드백 메모리의 크기는 전체 피드백 메모리의 75%를 차지하므로 첫 두 스테이지의 피드백 메모리 크기 감소에 초점을 맞춘다. OFDM 전송에서 IFFT 입력신호는 변조데이터와 파일럿과 널 신호로 구성된다는 특징을 이용하여 변조데이터와 파일럿/널 신호를 각각 부호있는 정수로 매핑하여 입력신호의 워드길이를 감소시키는 방법을 제안한다. 시뮬레이션을 통해 제안한 방법이 기존 방법보다 피드백 메모리의 크기를 약 39%까지 감소시킬 수 있음을 보인다.

In OFDM-based very high-speed communication systems, FFT/IFFT processor should have several properties of low-area and low-power consumption as well as high throughput and low processing latency. Thus, radix-2k MDF (multipath delay feedback) architectures by adopting pipeline and parallel processing are suitable. In MDF architecture, the feedback memory which increases in proportion to the input signal word-length has a large area and power consumption. This paper presents a feedback memory size reduction method of radix-22 MDF IFFT processor for OFDM applications. The proposed method focuses on reducing the feedback memory size in the first two stages of MDF architectures since the first two stages occupy about 75% of the total feedback memory. In OFDM transmissions, IFFT input signals are composed of modulated data and pilot, null signals. In order to reduce the IFFT input word-length, the integer mapping which generates mapped data composed of two signed integer corresponding to modulated data and pilot/null signals is proposed. By simulation, it is shown that the proposed method has achieved a feedback memory reduction up to 39% compared to conventional approach.

키워드

참고문헌

  1. S. He and M. Torkelson, "Designing pipeline FFT processor for OFDM (de) modulation", URSI Int Symp Signals Syst Electron., pp. 257-262, 1998.
  2. "Wireless LAN Medium Access Control and Physical Layer Specifications", in Proc. IEEE Advanced Communication Technology, Part 15.3, pp. 804-808, Feb, 2012.
  3. "Wireless MAC and PHY Specifications for High Rate WPANs", IEEE Std 802.15.3-2003, Local and metropolitan area networks Part 15.3.
  4. T. S. Cho and H. H. Lee, "A high-speed low-complexity modified radix-2^5 FFT processor for high rate WPAN applications", IEEE Trans. VLSI Syst, vol. 21, no. 1, pp. 187-191, Feb, 2013. https://doi.org/10.1109/TVLSI.2011.2182068
  5. S. J. Huang, S. G. Chen, "A high-throughput radix-16 FFT processor with parallel and normal input/output ordering for IEEE 802.15. 3c systems", IEEE Tran. Circuits Sys. I, vol. 59, pp. 1752-1765, 2012. https://doi.org/10.1109/TCSI.2011.2180430
  6. C. Yu, M. H. Yen and P. A. Hsiung, "A low-power 64-point pipeline FFT/IFFT processor for OFDM applications", IEEE Trans Consum. Electron. vol. 57, pp. 40-45, 2011. https://doi.org/10.1109/TCE.2011.5735479
  7. G. K. Ganjikunta and S. K. Sahoo, "An area-efficient and low-power 64-point pipeline Fast Fourier Transform for OFDM applications", Integration, the VLSI Journal, vol. 57, pp. 125-131, 2017. https://doi.org/10.1016/j.vlsi.2016.12.002
  8. I. G. Jang, J. K. Cho, Y. E. Kim and J. G. Chung, "Memory size reduction technique of SDF IFFT architecture for OFDM-based applications", IEICE Trans. Commun., vol. 95-B, pp. 2059-2064, 2012.
  9. C. Yang, C. Wei, Y. Xie, H. Chen and C. Ma, "Area-efficient mixed-radix variable-length FFT processor", IEICE Electron. Expr., vol. 14, no. 10, pp. 1-10, 2017.
  10. J. Yu and K. J. Cho, "An area-efficient 256-point design for WiMAX system", JKIIECT, vol. 11. no. 3, pp. 270-276, 2018.
  11. J. Yu and K. J. Cho, "A low-area and low-power 512-point pipelined FFT design using raidx-24-23 for OFDM applications", JKIIECT, vol. 11. no. 5, pp. 475-480, 2018.