DOI QR코드

DOI QR Code

A NOTE ON THE EXISTENCE OF HORIZONTAL ENVELOPES IN THE 3D-HEISENBERG GROUP

  • Huang, Yen-Chang (Department of Applied Mathematics National University of Tainan)
  • 투고 : 2019.02.01
  • 심사 : 2019.09.11
  • 발행 : 2020.03.01

초록

By using the support functions on the xy-plane, we show the necessary and sufficient conditions for the existence of envelopes of horizontal lines in the 3D-Heisenberg group. A method to construct horizontal envelopes from the given ones is also derived, and we classify the solutions satisfying the construction.

키워드

참고문헌

  1. V. I. Arnold, Mathematical Methods of Classical Mechanics, translated from the Russian by K. Vogtmann and A. Weinstein, second edition, Graduate Texts in Mathematics, 60, Springer-Verlag, New York, 1989. https://doi.org/10.1007/978-1-4757-2063-1
  2. V. I. Arnold, Singularities of caustics and wave fronts, Mathematics and its Applications (Soviet Series), 62, Kluwer Academic Publishers Group, Dordrecht, 1990. https://doi.org/10.1007/978-94-011-3330-2
  3. V. I. Arnold, V. V. Goryunov, O. V. Lyashko, and V. A. Vasilev, Singularity Theory. II, Dynamical Systems VIII, Encyclopaedia Math. Sci., Vol. 39, Springer-Verlag, Berlin, 1993.
  4. V. I. Arnold, S. M. Gusein-Zade, and A. N. Varchenko, Singularities of differen-tiable maps. Vol. I, translated from the Russian by Ian Porteous and Mark Reynolds, Monographs in Mathematics, 82, Birkhauser Boston, Inc., Boston, MA, 1985. https://doi.org/10.1007/978-1-4612-5154-5
  5. J.-D. Boissonnat and K. T. G. Dobrindt, On-line construction of the upper envelope of triangles and surface patches in three dimensions, Comput. Geom. 5 (1996), no. 6, 303-320. https://doi.org/10.1016/0925-7721(95)00007-0
  6. O. Calin, D.-C. Chang, and P. Greiner, Geometric mechanics on the Heisenberg group, Bull. Inst. Math. Acad. Sinica 33 (2005), no. 3, 185-252.
  7. G. Capitanio, Legendrian graphs generated by tangential family germs, Proc. Edinb. Math. Soc. (2) 49 (2006), no. 1, 29-37. https://doi.org/10.1017/S0013091504000999
  8. J. H. Cheng, J. F. Hwang, A. Malchiodi, and P. Yang, Minimal surfaces in pseudoher-mitian geometry, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 4 (2005), no. 1, 129-177.
  9. H.-L. Chiu, Y.-C. Huang, and S.-H. Lai, An application of the moving frame method to integral geometry in the Heisenberg group, SIGMA Symmetry Integrability Geom. Methods Appl. 13 (2017), Paper No. 097, 27 pp. https://doi.org/10.3842/SIGMA.2017.097
  10. A. Clausen and C. Strub, A general and intuitive envelope theorem, Edinburgh School of Economics Discussion Paper Series, ESE Discussion Papers; No. 274, 2016.
  11. H. Edelsbrunner, L. J. Guibas, and M. Shari, The upper envelope of piecewise linear functions: Algorithms and applications, Discrete & Computational Geometry 4 (1989), no. 4, 311-336. https://doi.org/10.1007/BF02187733
  12. L. P. Eisenhart, A Treatise on the Differential Geometry of Curves and Surfaces, Dover Publications, Inc., New York, 1960.
  13. H. Geiges, An Introduction to Contact Topology, Cambridge Studies in Advanced Mathematics, 109, Cambridge University Press, Cambridge, 2008.
  14. M. C. Griebelery and J. P. Araujo, General envelope theorems for multidimensional type spaces, The 31nd Meeting of the Brazilian Econometric Society, 2009.
  15. M. Gromov, Carnot-Caratheodory spaces seen from within, in Sub-Riemannian geometry, 79-323, Progr. Math., 144, Birkhauser, Basel, 1996.
  16. J. Hershberger, Finding the upper envelope of n line segments in O(n log n) time, Inform. Process. Lett. 33 (1989), no. 4, 169-174. https://doi.org/10.1016/0020-0190(89)90136-1
  17. S. Izumiya, Completely integrable first-order partial differential equations, Surikaisekiken kyusho Kokyuroku No. 807 (1992), 12-31.
  18. A. Kock, Envelopes-notion and definiteness, Beitrage Algebra Geom. 48 (2007), no. 2, 345-350.
  19. Y. Li, D. Pei, M. Takahashi, and H. Yu, Envelopes of Legendre curves in the unit spherical bundle over the unit sphere, Q. J. Math. 69 (2018), no. 2, 631-653. https://doi.org/10.1093/qmath/hax056
  20. V. Marenich, Geodesics in Heisenberg groups, Geom. Dedicata 66 (1997), no. 2, 175-185. https://doi.org/10.1023/A:1004916117293
  21. P. Milgrom and I. Segal, Envelope theorems for arbitrary choice sets, Econometrica 70 (2002), no. 2, 583-601. https://doi.org/10.1111/1468-0262.00296
  22. R. Monti and M. Rickly, Geodetically convex sets in the Heisenberg group, J. Convex Anal. 12 (2005), no. 1, 187-196.
  23. M. Ritore and C. Rosales, Area-stationary surfaces in the Heisenberg group $H^1$, Adv. Math. 219 (2008), no. 2, 633-671. https://doi.org/10.1016/j.aim.2008.05.011
  24. L. A. Santalo, Integral Geometry and Geometric Probability, second edition, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2004. https://doi.org/10.1017/CBO9780511617331
  25. M. Takahashi, Legendre curves in the unit spherical bundle over the unit sphere and evolutes, in Real and complex singularities, 337-355, Contemp. Math., 675, Amer. Math. Soc., Providence, RI, 2016. https://doi.org/10.1090/conm/675/13600
  26. R. Thom, Sur la theorie des enveloppes, J. Math. Pures Appl. (9) 41 (1962), 177-192.
  27. V. M. Zakalyukin, Envelopes of wave front families, and control theory, Trudy Mat. Inst. Steklov. 209 (1995), Osob. Gladkikh Otobrazh. s Dop. Strukt., 133-142.