DOI QR코드

DOI QR Code

ON THE APPROXIMATION BY REGULAR POTENTIALS OF SCHRÖDINGER OPERATORS WITH POINT INTERACTIONS

  • 투고 : 2019.02.10
  • 심사 : 2019.05.16
  • 발행 : 2020.03.01

초록

We prove that wave operators for Schrödinger operators with multi-center local point interactions are scaling limits of the ones for Schrödinger operators with regular potentials. We simultaneously present a proof of the corresponding well known result for the resolvent which substantially simplifies the one by Albeverio et al.

키워드

참고문헌

  1. S. Agmon, Spectral properties of Schrodinger operators and scattering theory, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2 (1975), no. 2, 151-218.
  2. S. Albeverio, F. Gesztesy, R. Hoegh-Krohn, and H. Holden, Solvable models in quantum mechanics, second edition, AMS Chelsea Publishing, Providence, RI, 2005.
  3. H. D. Cornean, A. Michelangeli, and K. Yajima, Two-dimensional Schrodinger operators with point interactions: Threshold expansions, zero modes and Lp-boundedness of wave operators, Rev. Math. Phys. 31 (2019), no. 4, 1950012, 32 pp. https://doi.org/10.1142/S0129055X19500120
  4. P. A. Deift, Applications of a commutation formula, Duke Math. J. 45 (1978), no. 2, 267-310. http://projecteuclid.org/euclid.dmj/1077312819 https://doi.org/10.1215/S0012-7094-78-04516-7
  5. G. Dell'Antonio, A. Michelangeli, R. Scandone, and K. Yajima, $L^p$-boundedness of wave operators for the three-dimensional multi-centre point interaction, Ann. Henri Poincare 19 (2018), no. 1, 283-322. https://doi.org/10.1007/s00023-017-0628-4
  6. H. Holden, Konvergens mot punkt-interaksjoner, (In Norwegian) Cand. Real. Thesis, University of Oslo, Norway, 1981.
  7. A. D. Ionescu and W. Schlag, Agmon-Kato-Kuroda theorems for a large class of perturbations, Duke Math. J. 131 (2006), no. 3, 397-440. https://doi.org/10.1215/S0012-7094-06-13131-9
  8. A. Jensen and G. Nenciu, A unified approach to resolvent expansions at thresholds, Rev. Math. Phys. 13 (2001), no. 6, 717-754. https://doi.org/10.1142/S0129055X01000843
  9. T. Kato, Perturbation of Linear Operators, Springer Verlag. Heidelberg-New-York-Tokyo, 1966.
  10. H. Koch and D. Tataru, Carleman estimates and absence of embedded eigenvalues, Comm. Math. Phys. 267 (2006), no. 2, 419-449. https://doi.org/10.1007/s00220-006-0060-y
  11. S. T. Kuroda, On the existence and the unitary property of the scattering operator, Nuovo Cimento 12, 1959.
  12. S. T. Kuroda, An Introduction to Scattering Theory, Lecture Notes Series, 51, Aarhus Universitet, Matematisk Institut, Aarhus, 1978.
  13. M. Reed and B. Simon, Methods of Modern Mathematical Physics. I, second edition, Academic Press, Inc., New York, 1980.
  14. K. Yajima, $L^1$ and $L^{\infty}$-boundedness of wave operators for three dimensional Schrodinger operators with threshold singularities, Tokyo J. Math. 41 (2018), no. 2, 385-406. https://projecteuclid.org/euclid.tjm/1520305215 https://doi.org/10.3836/tjm/1502179271