References
- V. I. Arnold, Mathematical Methods of Classical Mechanics, translated from the Russian by K. Vogtmann and A. Weinstein, second edition, Graduate Texts in Mathematics, 60, Springer-Verlag, New York, 1989. https://doi.org/10.1007/978-1-4757-2063-1
- V. I. Arnold, Singularities of caustics and wave fronts, Mathematics and its Applications (Soviet Series), 62, Kluwer Academic Publishers Group, Dordrecht, 1990. https://doi.org/10.1007/978-94-011-3330-2
- V. I. Arnold, V. V. Goryunov, O. V. Lyashko, and V. A. Vasilev, Singularity Theory. II, Dynamical Systems VIII, Encyclopaedia Math. Sci., Vol. 39, Springer-Verlag, Berlin, 1993.
- V. I. Arnold, S. M. Gusein-Zade, and A. N. Varchenko, Singularities of differen-tiable maps. Vol. I, translated from the Russian by Ian Porteous and Mark Reynolds, Monographs in Mathematics, 82, Birkhauser Boston, Inc., Boston, MA, 1985. https://doi.org/10.1007/978-1-4612-5154-5
- J.-D. Boissonnat and K. T. G. Dobrindt, On-line construction of the upper envelope of triangles and surface patches in three dimensions, Comput. Geom. 5 (1996), no. 6, 303-320. https://doi.org/10.1016/0925-7721(95)00007-0
- O. Calin, D.-C. Chang, and P. Greiner, Geometric mechanics on the Heisenberg group, Bull. Inst. Math. Acad. Sinica 33 (2005), no. 3, 185-252.
- G. Capitanio, Legendrian graphs generated by tangential family germs, Proc. Edinb. Math. Soc. (2) 49 (2006), no. 1, 29-37. https://doi.org/10.1017/S0013091504000999
- J. H. Cheng, J. F. Hwang, A. Malchiodi, and P. Yang, Minimal surfaces in pseudoher-mitian geometry, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 4 (2005), no. 1, 129-177.
- H.-L. Chiu, Y.-C. Huang, and S.-H. Lai, An application of the moving frame method to integral geometry in the Heisenberg group, SIGMA Symmetry Integrability Geom. Methods Appl. 13 (2017), Paper No. 097, 27 pp. https://doi.org/10.3842/SIGMA.2017.097
- A. Clausen and C. Strub, A general and intuitive envelope theorem, Edinburgh School of Economics Discussion Paper Series, ESE Discussion Papers; No. 274, 2016.
- H. Edelsbrunner, L. J. Guibas, and M. Shari, The upper envelope of piecewise linear functions: Algorithms and applications, Discrete & Computational Geometry 4 (1989), no. 4, 311-336. https://doi.org/10.1007/BF02187733
- L. P. Eisenhart, A Treatise on the Differential Geometry of Curves and Surfaces, Dover Publications, Inc., New York, 1960.
- H. Geiges, An Introduction to Contact Topology, Cambridge Studies in Advanced Mathematics, 109, Cambridge University Press, Cambridge, 2008.
- M. C. Griebelery and J. P. Araujo, General envelope theorems for multidimensional type spaces, The 31nd Meeting of the Brazilian Econometric Society, 2009.
- M. Gromov, Carnot-Caratheodory spaces seen from within, in Sub-Riemannian geometry, 79-323, Progr. Math., 144, Birkhauser, Basel, 1996.
- J. Hershberger, Finding the upper envelope of n line segments in O(n log n) time, Inform. Process. Lett. 33 (1989), no. 4, 169-174. https://doi.org/10.1016/0020-0190(89)90136-1
- S. Izumiya, Completely integrable first-order partial differential equations, Surikaisekiken kyusho Kokyuroku No. 807 (1992), 12-31.
- A. Kock, Envelopes-notion and definiteness, Beitrage Algebra Geom. 48 (2007), no. 2, 345-350.
- Y. Li, D. Pei, M. Takahashi, and H. Yu, Envelopes of Legendre curves in the unit spherical bundle over the unit sphere, Q. J. Math. 69 (2018), no. 2, 631-653. https://doi.org/10.1093/qmath/hax056
- V. Marenich, Geodesics in Heisenberg groups, Geom. Dedicata 66 (1997), no. 2, 175-185. https://doi.org/10.1023/A:1004916117293
- P. Milgrom and I. Segal, Envelope theorems for arbitrary choice sets, Econometrica 70 (2002), no. 2, 583-601. https://doi.org/10.1111/1468-0262.00296
- R. Monti and M. Rickly, Geodetically convex sets in the Heisenberg group, J. Convex Anal. 12 (2005), no. 1, 187-196.
-
M. Ritore and C. Rosales, Area-stationary surfaces in the Heisenberg group
$H^1$ , Adv. Math. 219 (2008), no. 2, 633-671. https://doi.org/10.1016/j.aim.2008.05.011 - L. A. Santalo, Integral Geometry and Geometric Probability, second edition, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2004. https://doi.org/10.1017/CBO9780511617331
- M. Takahashi, Legendre curves in the unit spherical bundle over the unit sphere and evolutes, in Real and complex singularities, 337-355, Contemp. Math., 675, Amer. Math. Soc., Providence, RI, 2016. https://doi.org/10.1090/conm/675/13600
- R. Thom, Sur la theorie des enveloppes, J. Math. Pures Appl. (9) 41 (1962), 177-192.
- V. M. Zakalyukin, Envelopes of wave front families, and control theory, Trudy Mat. Inst. Steklov. 209 (1995), Osob. Gladkikh Otobrazh. s Dop. Strukt., 133-142.