Acknowledgement
Supported by : National Research Foundation of Korea (NRF)
This work was supported by Hankuk University of Foreign Studies Research Fund and National Research Foundation of Korea (NRF) grant funded by the Korean government (2018R1C1B5085022).
References
- H. Abdi and L. J. Williams, Principal component analysis, Wiley Interdiscip. Rev. Comput. Stat. 2-4 (2010), pp. 433-459.
- R. Badeau, G. Richard, and B. David, Sliding window adaptive SVD algorithms, IEEE Trans. Signal Process. 52 (2004), no. 1, 1-10. https://doi.org/10.1109/TSP.2003.820069
- J. L. Barlow, A. Smoktunowicz, and H. Erbay, Improved Gram-Schmidt type downdating methods, BIT 45 (2005), no. 2, 259-285. https://doi.org/10.1007/s10543-005-0015-2
- M. Brand, Fast low-rank modifications of the thin singular value decomposition, Linear Algebra Appl. 415 (2006), no. 1, 20-30. https://doi.org/10.1016/j.laa.2005.07.021
- J. R. Bunch and C. P. Nielsen, Updating the singular value decomposition, Numer. Math. 31 (1978/79), no. 2, 111-129. https://doi.org/10.1007/BF01397471
- Y. Li, L. Xu, J. Morphett, and R. Jacobs, An integreted algorithm of incremental and robust PCA, Proc. Int. Conf. on Image Processing (2003), 245-248.
- C. Pehlevan, T. Hu, and D. B. Chklovskii, A Hebbian/anti-Hebbian neural network for linear subspace learning: a derivation from multidimensional scaling of streaming data, Neural Comput. 27 (2015), no. 7, 1461-1495. https://doi.org/10.1162/neco_a_00745
- J. Weng, Y. Zhang, and W. S. Hwang, Candid covariance-free incremental principal component analysis, IEEE Trans. Pattern Anal. Mach. Intell, 25-8 (2003), pp. 1034-1040. https://doi.org/10.1109/TPAMI.2003.1217609
- H. Zhao, P. C. Yuen, and J. T. Kwok, A novel incremental principal component analysis and its application for face recognition, IEEE Trans. on Sys. Man, and Cybernetics, 36-4 (2006), pp. 873-886. https://doi.org/10.1109/TSMCB.2006.870645