DOI QR코드

DOI QR Code

고방열 재료 개발을 위한 에폭시/단일벽 탄소나노튜브 복합체 개발

Development of Epoxy Composites with SWCNT for Highly Thermal Conductivity

  • Kim, Hyeonil (Institute of Advanced Composite Materials, Korea Institute of Science and Technology(KIST)) ;
  • Ko, Heung Cho (School of Materials Science and Engineering, Gwangju Institute of Science and Technology(GIST)) ;
  • You, Nam-Ho (Institute of Advanced Composite Materials, Korea Institute of Science and Technology(KIST))
  • 투고 : 2019.04.26
  • 심사 : 2020.02.25
  • 발행 : 2020.02.29

초록

지난 10년간 효율적인 방열 재료 개발을 위해 유망한 매트릭스로서 액정 에폭시 수지(Liquid crystalline epoxy, LCER)는 많은 주목을 받아 왔다. 본 연구에서는 LECR중에서 대표적인 4,4-diglycidyloxybiphenyl (DP) 에폭시를 이용한 고분자/SWCNT 복합체의 합성과 제조 및 특성 분석을 포함한 포괄적인 연구를 제시한다. 복합 재료의 열전도 특성을 확인해보기 위해 에폭시 수지와 충전제인 단일벽 탄소나노튜브(Single-wall carbon nanotube, SWCNT)로 구성된 복합체 샘플이 준비되었다. 특히 DP 복합체는, LCER의 고도로 정렬 된 미세 구조로 인해 동일한 필러를 사용하는 상업용 에폭시의 복합체에 비해 높은 열 전도성을 보였다. 또한, DP 복합체의 열전도도는 충전제의 양을 조절하여 제어할 수 있으며, 특히 SWCNT의 함량이 50 wt%인 DP 복합체는 열전도도는 2.008 W/mK로 가장 높은 열전도도를 나타내었다.

Over the past decade, liquid crystalline epoxy (LCER) has attracted much attention as a promising matrix for the development of efficient heat dissipation materials. This study presents a comprehensive study including synthesis, preparation and chacterization of polymer/inorganic composites using typical 4,4-diglycidyloxybiphenyl (DP) epoxy among LECR. To confirm the thermal conductivity of composite materials, we have prepared composite samples composed of epoxy resin and single-wall carbon nanotube (SWCNT) as a filler. In particular, DP composites exhibit higher thermal conductivity than commercial epoxy composites that use the same type of filler due to the highly ordered microstructure of the LCER. In addition, the thermal conductivity of the DP composite can be controlled by controlling the amount of filler. In particular, the DP composite containing a SWCNT content of 50 wt% has the highest thermal conductivity of 2.008 W/mK.

키워드

참고문헌

  1. Sirringhaus, H., "25th Anniversary Article: Organic Field-effect Transistors: the Path Beyond Amorphous Silicon," Journal of Composite Materials, Vol. 26, No. 9, 2014, pp. 1319-1335.
  2. You, J.B., Dou, L.T., Hong, Z.R., Li, G., and Yang, Y., "Recent Trends in Polymer Tandem Solar Cells Research," Progress in Polymer Science, Vol. 38, No. 12, 2013, pp. 1909-1928. https://doi.org/10.1016/j.progpolymsci.2013.04.005
  3. Kaltenbrunner, M., Sekitani, T., Reeder, J., Yokota, T., Kuribara, K., Tokuhara, T., Drack, M., Schwodiauer, R., Graz, I., Bauer-Gogonea, S., Bauer, S., and Someya, T., "An Ultra-lightweight Design for Imperceptible Plastic Electronics," Nature, Vol. 499, No. 7459, 2013, pp. 458-463. https://doi.org/10.1038/nature12314
  4. Chen, S.C., Wan, C.C., and Wang, Y.Y., "Thermal Analysis of Lithium-ion Batteries," Journal of Power Sources, Vol. 140, No. 1, 2005, pp. 111-124. https://doi.org/10.1016/j.jpowsour.2004.05.064
  5. Kizilel, R., Sabbah, R., Selman, J.R., and Al-Hallaj, S., "An Alternative Cooling System to Enhance the Safety of Li-ion Battery Packs," Journal of Power Sources, Vol. 194, No. 2, 2009, pp. 1105-1112. https://doi.org/10.1016/j.jpowsour.2009.06.074
  6. Han, N., Cuong, T.V., Han, M., Ryu, B.D., Chandramohan, S., Park, J.B., Kang, J.H., Park, Y.J., Ko, K.B., Kim, H.Y., Kim, H.K., Ryu, J.H., Katharria, Y.S., Choi, C.J., and Hong, C.H., "Improved Heat Dissipation in Gallium Nitride Light-emitting Diodes with Embedded Graphene Oxide Pattern," Nature Communications, Vol. 4, 2013, pp. 1452. https://doi.org/10.1038/ncomms2448
  7. Huang, X., Zhi, C., Jiang, P., Golberg, D., Bando, Y., and Tanaka, T., "Polyhedral Oligosilsesquioxane-modified Boron Nitride Nanotube Based Epoxy Nanocomposites: An Ideal Dielectric Material with High Thermal Conductivity," Advanced Functional Materials, Vol. 23, No. 14, 2013, pp. 1824-1831. https://doi.org/10.1002/adfm.201201824
  8. Hsiao, M.C., Ma, C.C., Chiang, J.C., Ho, K.K., Chou, T.Y., Xie, X., Tsai, C.H., Chang, L.H., and Hsieh, C.K., "Thermally Conductive and Electrically Insulating Epoxy Nanocomposites with Thermally Reduced Graphene Oxide-silica Hybrid Nanosheets," Nanoscale, Vol. 5, No. 13, 2013, pp. 5963-5871.
  9. Raza, M.A., Westwood, A.V.K., Stirling, C., and Ahmad, R., "Effect of Boron Nitride Addition on Properties of Vapour Grown Carbon Nanofiber/rubbery Epoxy Composites for Thermal Interface Applications," Composites Science and Technology., Vol. 120, No. 4, 2015, pp. 9-16. https://doi.org/10.1016/j.compscitech.2015.10.013
  10. Hu, Y., Du, G., and Chen, N., "A Novel Approach for $Al_2O_3$epoxy Composites with High Strength and Thermal Conductivity," Composites Science and Technology, Vol. 124, No. 1, 2016, pp. 36-43. https://doi.org/10.1016/j.compscitech.2016.01.010
  11. Yu, W., Fu, J., Chen, L., Zong, P., Yin, J., Shang, D., Lu, Q., Chen, H., and Shi, L., "Enhanced Thermal Conductive Property of Epoxy Composites by low Mass Fraction of Organic-inorganic Multilayer Covalently Grafted Carbon Nanotubes," Composites Science and Technology, Vol. 125, No. 23, 2013, pp. 116-125.
  12. Min, C., Yu, D.M., Cao, J.Y., Wang, G.L., and Feng, L.H., "A Graphite Nanoplatelet/epoxy Composite with High Dielectric Constant and High Thermal Conductivity," Carbon, Vol. 55, 2013, pp. 116-125. https://doi.org/10.1016/j.carbon.2012.12.017
  13. Verma, P., Saini, P., Malik, R.S., and Choudhary, V., "Excellent Electromagnetic Interference Shielding and Mechanical Properties of High Loading Carbon-nanotubes/polymer Composites Designed Using Melt Recirculation Equipped Twin-screw Extruder," Carbon, Vol. 89, 2015, pp. 209-317.
  14. Chen, Z., Xu, C., Ma, C., Ren, W., and Cheng, H.M., "Lightweight and Flexible Graphene Foam Composites for High-performance Electromagnetic Interference Shielding," Advanced Materials, Vol. 25, No. 9, 2013, pp. 1296-1300. https://doi.org/10.1002/adma.201204196
  15. Akatsuka, M., and Takezawa, Y., "Study of High Thermal Conductive Epoxy Resins Containing Controlled High-order Structures," Journal of Applied Polymer Science, Vol. 89, No. 9, 2003, pp. 2464-2467. https://doi.org/10.1002/app.12489
  16. Xie, X., Li, D.Y., Tsai, T.H., Liu, J., Braun, P.V., and Cahill, D.G., "Thermal Conductivity, Heat Capacity, and Elastic Constants Of Water Soluble Polymers and Polymer Blends," Macromolecules, Vol. 49, No. 3, 2016, pp. 972-978. https://doi.org/10.1021/acs.macromol.5b02477
  17. Kim, C.B., Lee, J., Cho, J., and Goh, M., "Thermal Conductivity Enhancement of Reduced Graphene Oxide via Chemical Defect Healing for Efficient Heat Dissipation," Carbon, Vol. 139, 2018, pp. 386-392. https://doi.org/10.1016/j.carbon.2018.07.008
  18. Lu, H., Yao, Y., Huang, W.M., Leng, J., and Hui, D., "Significantly Improving Infrared Light Induced Shape Recovery Behavior of Shape Memory Polymeric Nanocomposite via a Synergistic Effect of Carbon Nanotube and Boron Nitride," Composites Part B: Engineering, Vol. 62, 2014, pp. 256-261. https://doi.org/10.1016/j.compositesb.2014.03.007
  19. Jiang, Q., Wang, X., Zhu, Y., Hui, D., and Qiu, Y., "Mechanical, Electrical and Thermal Properties of Aligned Carbon Nanotube/Polyimide Composites," Composites Part B: Engineering, Vol. 56, 2014, pp. 408-412. https://doi.org/10.1016/j.compositesb.2013.08.064
  20. Zhu, H., Li, Y., Fang, Z., Xu, J., Cao, F., Wan, J., Preston, C., Yang, B., and Hu, L., "Highly Thermally Conductive Papers with Percolative Layered Boron Nitride Nanosheets," ACS Nano, Vol. 8, No. 4, 2014, pp. 3606-3613. https://doi.org/10.1021/nn500134m
  21. Song, W.L., Wang, P., Cao, L., Anderson, A., Meziani, M.J., Farr, A.J., and Sun, Y.-P., "Polymer/Boron Nitride Nanocomposite Materials for Superior Thermal Transport Performance", Angewandte Chemie International Edition, Vol. 51, No. 26, 2012, pp. 6498-6501. https://doi.org/10.1002/anie.201201689
  22. Carfagna, C., Amendola, E., and Giamberini, M., "Liquid Crystalline Epoxy Based Thermosetting Polymers," Progress in Polymer Science, Vol. 22, No. 8, 1997, pp. 1607-1647. https://doi.org/10.1016/S0079-6700(97)00010-5
  23. Barclay, G.G., and Ober, C.K., "Liquid-crystalline and Rigidrod Networks," Progress in Polymer Science, Vol. 18, No. 5, 1993, pp. 899-945. https://doi.org/10.1016/0079-6700(93)90021-4
  24. Hoyt, A.E., and Benicewicz, B.C., "Rigid Rod Molecules as Liquid Crystal Thermosets. II. Rigid Rod Esters," Journal of Polymer Science Part A: Polymer Chemistry, Vol. 28, No. 12, 1990, pp. 3417-3427. https://doi.org/10.1002/pola.1990.080281219
  25. Azeez, A.A., Rhee, K.Y., Park, S.J., and Hui, D., "Epoxy Clay Nanocomposites-processing, Properties and Applications: A Review," Composites Part B: Engineering, Vol. 45, No. 1, 2013, pp. 308-320. https://doi.org/10.1016/j.compositesb.2012.04.012
  26. Luo, F.B., Wu, K., Guo, H.L., Zhao, Q., and Lu, M.G., "Anisotropic Thermal Conductivity and Flame Retardancy of Nanocomposite Based on Mesogenic Epoxy and Reduced Graphene Oxide Bulk," Composites Science and Technology, Vol. 124, No. 23, 2016, pp. 1-8. https://doi.org/10.1016/j.compscitech.2015.12.016
  27. Harada, M., Ando, J., Yamaki, M., and Ochi, M., "Synthesis, Characterization, and Mechanical Properties of a Novel Terphenyl Liquid Crystalline Epoxy Resin," Journal of Applied Polymer Science, Vol. 132, No. 1, 2015, pp. 41296.
  28. Yamamoto, H., Fujita, A., Harada, M., and Ochi, M., "Synthesis and Characterization of Novel Liquid Crystalline Epoxy Resin with Low Melting Point," Molecular Crystals and Liquid Crystals, Vol. 588, No. 1, 2014, pp. 41-50. https://doi.org/10.1080/15421406.2013.823363
  29. Harada, M., Hamaura, N., Ochi, M., and Agari, Y., "Thermal Conductivity of Liquid Crystalline Epoxy/BN Filler Composites Having Ordered Network Structure," Composites Part B: Engineering, Vol. 55, 2013, pp. 306-313. https://doi.org/10.1016/j.compositesb.2013.06.031
  30. Yeo, H., Islam, A.M., You, N.H., Ahn, S., Goh, M., Hahn, J.R., and Jang, S.G., "Characteristic Correlation between Liquid Crystalline Epoxy and Alumina Filler on Thermal Conducting Properties," Composites Science and Technology, Vol. 141, 2017, pp. 99-105. https://doi.org/10.1016/j.compscitech.2017.01.016
  31. Mallakpour, S., and Zadehnazari, A., "Preparation of Dopamine-functionalized Multi-wall Carbon Nanotube/poly (amideimide) Composites and Their Thermal and Mechanical Properties," New Carbon Materials, Vol. 31, 2016, pp. 18-30. https://doi.org/10.1016/S1872-5805(16)60001-X
  32. Sahoo, N.G., Rana, S., Cho, J.W., Li, L., and Chan, S.H., "Polymer Nanocomposites Based on Functionalized Carbon Nanotubes," Progress in Polymer Science, Vol. 35, 2010, pp. 837-867. https://doi.org/10.1016/j.progpolymsci.2010.03.002
  33. Dhall, S., and Jaggi, N., "Effect of Oxide Nanoparticles on Structural Properties of Multiwalled Carbon Nanotubes," Theochem., Vol. 1107, 2016 pp. 300-304.
  34. Wei, Y., Xie, C.G., Dean, K.A., and Coll, B.F., "Stability of Carbon Nanotubes under Electric Field Studied by Scanning Electron Microscopy," Applied Physics Letters, Vol. 79, 2001, pp. 4527-4529. https://doi.org/10.1063/1.1429300