DOI QR코드

DOI QR Code

Comparison of In Vitro Lipid Deposition and Change of Optical Characteristics on Daily Disposable Lenses (1-day) and 3-days Lenses Over 3 days

3-days lenses와 daily disposable lenses(1-day)의 착용 시간 별 지방 침착량 및 광학적 특성 변화의 비교

  • Song, Sun Jung (Department of Optometry & Vision Science, Daegu Catholic University) ;
  • Lee, Su Yeon (Optical Convergence Technology Center, Daegu Catholic University) ;
  • Kim, Ki Hong (Department of Optometry & Vision Science, Daegu Catholic University) ;
  • Chu, Byoung Sun (Department of Optometry & Vision Science, Daegu Catholic University)
  • 송선정 (대구가톨릭대학교 바이오메디대학 안경광학과) ;
  • 이수연 (대구가톨릭대학교 안광학융합기술사업단) ;
  • 김기홍 (대구가톨릭대학교 바이오메디대학 안경광학과) ;
  • 추병선 (대구가톨릭대학교 바이오메디대학 안경광학과)
  • Received : 2019.08.20
  • Accepted : 2020.02.05
  • Published : 2020.04.20

Abstract

The study aimed to investigate in vitro lipid deposition of oleic acid, oleic acid methyl ester and cholesterol on a daily disposable (1-day lenses) and 3-days lenses over 3 days and changes of optical characteristics is also investigated. Artificial tear solutions were prepared to simulate actual tear compositions. Two types of contact lenses (1-day lenses (Senofilcon A) and 3-days lenses (silicone tripolymer)) were soaked in the artificial tear solutions within an incubator at 37 ℃ with 150 rpm for 8, 16, 24 hours. Lipid deposition (oleic acid, oleic acid methyl ester and cholesterol) were measured using high performance liquid chromatography (HPLC) instrument. In addition, measurements of oxygen transmissibility, light transmittance and observation of lens surface were conducted. The amount of lipid deposition on the 1-day lenses were 127.55 ㎍/lens for Day 1, 302.96 ㎍/lens, for Day 2, and 353.30 ㎍/lens for Day 3. The 3-days lenses were 46.22 ㎍/lens for Day 1, 66.07 ㎍/lens for Day 2, and 67.45 ㎍/lens for Day 3. Oxygen transmissibility were 81×10-9(cm/sec)(ml O2/ml×mmHg)(Baseline) and 48×10-9(cm/sec)(ml O2/ml×mmHg) (Day 3) for the 1-day lenses, it were 13.23×10-9(cm/sec)(ml O2/ml×mmHg)(Baseline) and 9.6×10-9(cm/sec)(ml O2/ml×mmHg) (Day 3) for the 3-days lenses. Transmittance of each lenses were 97.21% (Baseline) and 94.25% (Day 3) for the 1-day lenses, 97.65% (Baseline) and 95.15% (Day 3) for the 3-days lenses. Observation of surface deposition indicated greatest deposition for the 3-days lenses type on Day 3. Lipid deposition for both lens types increased by day and was greater for the 1-day lenses type. Surface deposition appeared to differ as it was greatest for the 3 days lens type, which may suggest other deposits such as protein may be present.

In vitro 조건 하에서 두 종류의 실리콘 하이드로 겔 렌즈인 1-day lenses(Acuvue Oasys)와 3-days lenses(Davich Trevues)의 시간 경과에 따른 지방 침착물 양과 광학적 특성 변화를 비교하였다. 인공 누액은 실제의 눈물의 조성비를 기준으로 준비하였으며, 일회용 렌즈(1-day lenses: senofilcon A)와 3일착용 렌즈(3-days lenses: silicone tripolymer)를 준비된 인공 누액에 담구어 배양기에서 37 ℃, 150 rpm의 속도로 흔들어 주면서 8 h, 16 h, 24 h 동안 침지 시켰다. 추출한 지방 침착물은 HPLC를 이용하여 지방성분을 분리하고 정량 하였다. 추가적으로 시간 경과에 따른 산소 투과율, 광 투과율, 표면 변화를 관찰하였다. 침착 된 지방의 총량은 1-day lenses가 1일차 127.55 ㎍/lens, 2일차 302.96 ㎍/lens, 3일차 353.30 ㎍/lens이었다. 3-days lenses는 1일차 46.22 ㎍/lens, 2일차 66.07 ㎍/lens, 3일차 67.45 ㎍/lens이었다. 지방 침착량은 1-3일 모두에서 3-days lenses가 적었다. 산소 투과도(Dk/t)는 최초 1-day lenses가 81×10-9(cm/sec)(mlO2/ml × mmHg), 3-days lenses가 13.23×10-9(cm/sec)(mlO2/ml×mmHg)로 3-days lenses가 현저하게 낮았으며, 3일차 1-day lenses는 48×10-9(cm/sec)(mlO2/ml × mmHg), 3-days lenses가 9.6 ×10-9(cm/sec)(mlO2/ml×mmHg)이었다. 가시광선 투과율은 최초 1-day lenses가 97.21%, 3-days lenses가 97.65%였으며, 3일차 1-day lenses가 94.25%, 3-days lenses가 95.15%로 나타났다. 시간 경과 별 표면 변화를 확대 관찰 시 3-days lenses의 표면에 보다 많은 침착물이 관찰되었다. 이로써 1-day lenses와 비교하여 3-days lenses의 3일 착용 시 지방 침착량은 적었으나, 표면 침착물은 3-day lenses에서 보다 많이 관찰되었으며, 이는 지방 침착물 외 다른 침착물이 더 많았을 것으로 판단된다.

Keywords

References

  1. Papas, E. Exp. Eye. Res. 1998, 67, 25. https://doi.org/10.1006/exer.1998.0504
  2. Papas, E. Cont. Lens Anterior. Eye. 2014, 37, 394. https://doi.org/10.1016/j.clae.2014.07.012
  3. Mishima, S. Ophthalmology 1982, 89, 525. https://doi.org/10.1016/s0161-6420(82)34755-7
  4. Iskeleli, G.; Karakoc, Y.; Ozkok, A. et al. Int. J. Ophthalmol. 2013, 6, 666. https://doi.org/10.3980/j.issn.2222-3959.2013.05.22
  5. Sheng, H.; Bullimore, M. A. Cornea 2007, 26, 520. https://doi.org/10.1097/ICO.0b013e318033a6da
  6. Amann, J.; Holley, G. P.; Lee, S. B. et al. Am. J. Ophthalmol. 2003, 135, 584. https://doi.org/10.1016/S0002-9394(02)02237-7
  7. Wiffen, S. J.; Hodge, D. O.; Bourne, W. M. Cornea 2000, 19, 47. https://doi.org/10.1097/00003226-200001000-00010
  8. Dillehay, S. M.; Miller, M. B. Eye. Cont. Lens. 2007, 33, 272. https://doi.org/10.1097/ICL.0b013e31802f78c2
  9. Contact Lens Spectrum 2019, 34, 26.
  10. Butovich, I. A. J. Lipid Res. 2009, 50, 501. https://doi.org/10.1194/jlr.M800426-JLR200
  11. Butovich, I. A.; Wojtowicz, J. C.; Molai, M. J. Lipid Res. 2009, 50, 2471. https://doi.org/10.1194/jlr.M900252-JLR200
  12. Borchman, D.; Foulks, G. N.; Yapert, M. C. et al. Chem. Phys. Lipids 2007, 147, 87. https://doi.org/10.1016/j.chemphyslip.2007.04.001
  13. Shine, W. E.; McCulley, J. P. Curr. Eye. Res. 2003, 26, 89. https://doi.org/10.1076/ceyr.26.2.89.14515
  14. Seifert, P.; Spitznas, M. Graefes. Arch. Clin. Exp. Ophthalmol. 1996, 234, 648. https://doi.org/10.1007/BF00185300
  15. Heynen, M.; Lorentz, H.; Srinivasan, S. et al. Optom. Vis. Sci. 2011, 88, 1172. https://doi.org/10.1097/OPX.0b013e31822a5295
  16. Kang, Y. S.; Lee, K. J. Korean J. Vis. Sci. 2010, 12, 127.
  17. Maziarz, E. P.; Stachowski, M. J.; Liu, X. M. et al. Eye. Contact. Lens. 2006, 32, 300. https://doi.org/10.1097/01.icl.0000224365.51872.6c
  18. Fatt, I.; Chaston, J. Int. Contact. Lens. Clin. 1985, 9, 76.
  19. Peng, C. C.; Fajardo, N. P.; Razunguzwa, T. et al. Optom. Vis. Sci. 2015, 92, 768. https://doi.org/10.1097/OPX.0000000000000625
  20. Teichroeb, J. H.; Forrest, J. A.; Ngai, V.; T. et al. Optom. Vis. Sci. 2008, 85, 1151. https://doi.org/10.1097/OPX.0b013e31818e8ad6
  21. Sweeney, D. F. Silicone Hydrogels: Structure, Properties and Behaviour, 2nd ed.; Butterworth Heinemann: Oxford, U. K., 2004; p 1.
  22. Nicolson, P. C.; Vogt, J. Biomaterials 2001, 22, 3273. https://doi.org/10.1016/S0142-9612(01)00165-X
  23. Grobe, G. L. Contact Lens Spectrum 1999, 14, 14.
  24. Lopez-Alemany, A.; Compan, V.; Refojo, M. F. J. Biomed. Mater. Res. 2002, 64, 319. https://doi.org/10.1002/jbm.10186
  25. Bontempo, A. R.; Rapp, J. Clao. J. 2001, 27, 75.
  26. Bontempo, A. R.; Rapp, J. Curr. Eye. Res. 1996, 16, 776. https://doi.org/10.1076/ceyr.16.8.776.8985
  27. Jones, I.; Evans, K.; Sariri, R. et al. Clao. J. 1997, 23, 122.
  28. Maissa, C.; Franklin, V.; Guillon, M. et al. Optom. Vis. Sci. 1998, 75, 697. https://doi.org/10.1097/00006324-199809000-00026
  29. Jones, L.; Mann, A.; Evans, K.; et al. Optom. Vis. Sci. 2000, 77, 503. https://doi.org/10.1097/00006324-200010000-00004
  30. Jang, J. K.; Park, I. J.; Shin, H. S. Korean. J. Vis. Sci. 2014, 16, 227.
  31. Park, M. J.; Kwon, H. L.; Choi, S. A. et al. J. Korean. Oph. Opt. Soc. 2013, 18, 429. https://doi.org/10.14479/jkoos.2013.18.4.429
  32. Carney, F. P.; Nash, W. L.; Sentell, K. B. Invest. Ophthalmol. Vis. Sci. 2008, 49, 120. https://doi.org/10.1167/iovs.07-0376
  33. Jones, L.; Senchyna, M. accessed on 15 Aug, 2019. (http://www.siliconehydrogels.org/editorials/previous_editorial_jones_senchyna.asp.)
  34. Holly, I. L. Master Thesis, Vision Science and Chemistry, Waterloo University, 2006.
  35. Franklin, V.; Tighe, B. Optom. Vis. Sci. 1996, 73, 16. https://doi.org/10.1097/00006324-199601000-00003
  36. Holly, L.; Miriam, H.; Lise, M. K.; et al. Mol. Vis. 2011, 17, 3392.
  37. Rebeix, V.; Sommer, F.; Marchin, B. et al. Biomaterials 2000, 21, 1197. https://doi.org/10.1016/S0142-9612(99)00221-5