DOI QR코드

DOI QR Code

Characterization of Rainfall Kinetic Energy in Seoul

서울 지점의 강우운동에너지 특성에 관한 연구

  • 이준학 (육군사관학교 토목환경학과)
  • Received : 2019.11.22
  • Accepted : 2020.01.02
  • Published : 2020.02.01

Abstract

The rainfall kinetic energy equation derived in the USA has been used in South Korea to quantitatively estimate the amount of soil erosion caused by rainfall for the past 40 years. It is critical to analyze the characteristics of rainfall kinetic energy that causes soil erosion from measured storm events in the study area because the characteristics depend on climate, region, and time. The purpose of this study is to analyze the characteristics in Seoul, South Korea, and the data of the Parsivel rain gauge measured in Seoul for 3 years was used for the current study. This study focuses on deriving the relationship between rainfall kinetic energy and rainfall intensity among the data measured by the Parsivel. The new rainfall kinetic energy equation in Seoul is proposed and compared with the previous equations used in South Korea.

한국은 강우로 인해 발생되는 토양침식량을 정량적으로 예측하기 위해서 미국에서 유도된 강우운동에너지식을 지난 40년 동안 사용해왔다. 강우의 특성은 기후, 지역 및 시간에 의존하기 때문에 연구 지역에서 측정된 호우사상으로부터, 토양 침식을 일으키는 강우운동에너지의 특성을 분석해서 연구에 활용하는 것이 필요하다. 본 연구의 목적은 서울 지역의 강우운동에너지의 특성을 분석하기 위한 것으로서 서울에서 3년 동안 측정 한 파시벨 강우자료를 사용하였다. 본 연구는 파시벨로 측정한 자료 중 강우강도에 따른 강우운동에너지의 관계를 규명하는데 중점을 두었으며, 새로운 강우운동에너지식을 제안하였다. 또한, 기존에 국내 및 국외에서 개발된 강우운동에너지식과 본 연구에서 도출한 서울 지점에서의 강우운동에너지의 특성을 비교 분석하였다.

Keywords

References

  1. Brown, L. C. and Foster, G. R. (1987). "Storm erosivity using idealized intensity distributions." Transactions of the ASAE, Vol. 30, No. 2, pp. 379-386. https://doi.org/10.13031/2013.31957
  2. Foster, G. R., McCool, D. K., Renard, K. G. and Moldenhauer, W. C. (1981). "Conversion of the universal soil loss equation to SI metric units." Journal of Soil and Water Conservation, Vol. 36, No. 6, pp. 355-359.
  3. Foster, G. R., Yoder, D. C., Weesies, G. A., McCool, D. K., McGregor, K. C. and Bingner, R. L. (2003). RUSLE 2.0 user's guide." USDA-Agricultural Research Service, Washington D.C.
  4. Jung, P. K., Ko, M. H., Im, J. N., Um, K. T. and Choi, D. U. (1983). "Rainfall erosion factor for estimating soil loss." Korean Journal of Soil Science and Fertilizer, Vol. 16, No. 2, pp. 112-118 (in Korean).
  5. Kim, J. G., Yang, D. Y. and Kim, M. S. (2010). "Evaluation physical characteristics of raindrop in Anseung, Gyeonggi province." Journal of the Korean Geomorphological Association, Vol. 17, No. 1, pp. 49-57 (in Korean).
  6. Kim, S. J., Lee, J. H., Shim, J. G. and Choi, B. C. (2017). "Analysis on the characteristics of rainfall kinetic energy at Youngpyung using PARSIVEL observation data." Proceedings of the Autumn Meeting of KMS in 2017, KMS, pp. 170-171 (in Korean).
  7. Kinnell, P. I. A. (1981). "Rainfall intensity-kinetic energy relationships for soil loss prediction." Soil Science Society of America Journal, Vol. 45, No. 1, pp. 153-155. https://doi.org/10.2136/sssaj1981.03615995004500010033x
  8. Lee, J. H. (2015). "A comparative study on rainfall kinetic energy equations for Korea." Proceedings of the KWRA 2015 Conference, Korea Water Resources Association, pp. 32-36 (in Korean).
  9. Lee, J. H., Shin, J. Y. and Heo, J. H. (2011). "Evaluation of rainfall erosivity in Korea using different kinetic energy equations." Korean Journal of Soil Science and Fertilizer, Vol. 44, No. 3, pp. 337-343 (in Korean). https://doi.org/10.7745/KJSSF.2011.44.3.337
  10. Lee, J. S. and Won, J. Y. (2013). "Analysis of the characteristic of monthly rainfall erosivity in Korea with derivation of rainfall energy equation." Journal of the Korean Society of Hazard Mitigation, KSHM, Vol. 13, No. 3, pp. 177-184 (in Korean). https://doi.org/10.9798/KOSHAM.2013.13.3.177
  11. Lim, Y. S., Kim, J. W., Kim, J. K. and Park, B. I. (2012). "Evaluation of kinetic energy of raindrops at Daejeon city using laser-optical disdrometer." Journal of the Korean Geomorphological Association, Vol. 19, No. 2, pp. 133-143 (in Korean).
  12. McGregor, K. C., Bingner, R. L., Bowie, A. J. and Foster, G. R. (1995). "Erosivity index values for Northern Mississippi." Transactions of the ASAE, Vol. 38, No. 4, pp. 1039-1047. https://doi.org/10.13031/2013.27921
  13. National Disaster Management Research Institute (NDMI) (2005). A basic study on the development of the soil erosion model in the mountain area (SEMMA), p. 20 (in Korean).
  14. Nearing, M. A., Yin, S. Q., Borrelli, P. and Polyakov, V. O. (2017). "Rainfall erosivity: An historical review." CATENA, Vol. 157, pp. 357-362. https://doi.org/10.1016/j.catena.2017.06.004
  15. Noe, J. K. and Kwon, S. K. (1984). "A study of the estimation of rainfall kinetic energy based on rainfall characteristics." College of Agricultural Research, Seoul National University, Vol. 9, No. 2, pp. 23-31 (in Korean).
  16. Park, J. H., Woo, H. S., Pyun, C. K. and Kim, K. I. (2000). "A study of distribution of rainfall erosivity in USLE/RUSLE for estimation of soil loss." Journal of Korea Water Resources Association, KWRA, Vol. 33, No. 5, pp. 603-610 (in Korean).
  17. Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K. and Yoder, D. C. (1997). Predicting soil erosion by water: A guide to conservation planning with the revised universal soil loss equation (RUSLE), Agricultural Handbook, No. 703, U. S. Department of Agriculture, Washington, DC, USA.
  18. Salles, C., Poesen, J. and Sempere-Torres, D. (2002). "Kinetic energy of rain and its functional relationship with intensity." Journal of Hydrology, Vol. 257, No. 1-4, pp. 256-270. https://doi.org/10.1016/S0022-1694(01)00555-8
  19. Shin, S. S, Park, S. D. and Choi, B. K. (2016). "Universal power law for relationship between rainfall kinetic energy and rainfall intensity." Advances in Meteorology, Vol. 2016, Article ID 2494681, pp. 1-11.
  20. Van Dijk, A. I. J. M., Bruijnzeel, L. A. and Rosewell, C. J. (2002). "Rainfall intensity-kinetic energy relationships: a critical literature appraisal." Journal of Hydrology, Vol. 261, No. 1, pp. 1-23. https://doi.org/10.1016/S0022-1694(02)00020-3
  21. Wischmeier, W. H. and Smith, D. D. (1958). "Rainfall energy and its relationship to soil loss." Transactions of the American Geophysical Union, Vol. 39, No. 3, pp. 285-291. https://doi.org/10.1029/TR039i002p00285
  22. Wischmeier, W. H. and Smith, D. D. (1965). Rainfall-erosion losses from cropland east of the Rocky Mountains-guide for selection of practices for soil and water conservation. Agriculture Handbook, No. 282, U. S. Department of Agriculture, Washington, DC, USA.
  23. Wischmeier, W. H. and Smith, D. D. (1978). Predicting rainfall erosion losses-A guide to conservation planning. Agriculture Handbook, No. 537, U.S. Department of Agriculture, Washington, DC, USA.