• Title/Summary/Keyword: Rainfall erosivity

Search Result 58, Processing Time 0.03 seconds

Evaluation of Rainfall Erosivity in Korea using Different Kinetic Energy Equations (강우 운동에너지식에 따른 한국의 강우침식인자 평가)

  • Lee, Joon-Hak;Shin, Ju-Young;Heo, Jun-Haeng
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.337-343
    • /
    • 2011
  • A particular empirical equation for rainfall kinetic energy is needed to compute rainfall erosivity, calculated by the annual sum of the product of total rainfall energy and maximum 30-min rainfall intensity. If rainfall kinetic energy equation was different, rainfall erosivity will be produced differently. However, the previous studies in Korea had little concern about rainfall kinetic energy equation and it was not clear which rainfall kinetic energy is suitable for Korea. The purpose of this study is to analyze and evaluate the difference of the rainfall erosivity based on different rainfall kinetic energy equations obtained from previous studies. This study introduced new rainfall erosivity factors based on rainfall kinetic energy equation of Noe and Kwon (1984) that is only regression model developed in Korea. Data of annual rainfall erosivity for 21 weather stations in 1980~1999 were used in this study. The result showed that rainfall erosivity factors by the previous equations had been about 10~20% overestimated than rainfall erosivity by Noe and Kwon (1984)'s equation in Korea.

Computing the Half-Month Rainfall-Runoff Erosivity Factor for RUSLE (RUSLE을 위한 반월 주기 강우가식성인자 산정)

  • 강문성;박승우;임상준;김학관
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.3
    • /
    • pp.29-40
    • /
    • 2003
  • The objective of the paper is to compute the half-month rainfall-runoff erosivity factor for revised universal soil loss equation (RUSLE). RUSLE is being used to develop soil conservation programs and identify optimum management practices. Rainfall-runoff erosivity factor (R) is a key input parameter to RUSLE. Rainfall-runoff erosivity factor has been calculated for twenty six stations from the nationwide rainfall data from 1973 to 2002 in south Korea. The average annual Rainfall-runoff erosivity factor at the analyzed stations Is between 3,130 and 10,476 (MJ/ha)ㆍ(mm/h). According to the computation of the half-month Rainfall-runoff erosivity factor for locations, 66-85% of the average annual R value has occurred during the summer months, June-August. The half-month R values from this study can be used for RUSLE.

Estimation of Rainfall Erosivity in North Korea using Modified Institute of Agricultural Sciences (수정 IAS 지수를 이용한 북한지역의 강우침식인자 추정)

  • Lee, Joon-Hak;Heo, Jun-Haeng
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1004-1009
    • /
    • 2011
  • Soil erosion in North Korea has been continued to accelerate by deterioration of topographical conditions. However, few studies have been conducted to predict the amount of soil loss in North Korea due to limited data so far. Rainfall erosivity is an important factor to predict the amount of long-term annual soil loss by USLE (universal soil loss equation). The purpose of this study is to investigate rainfall erosivity, which presented the potential risk of soil erosion by water, in North Korea. Annual rainfall erosivities for 27 stations in North Korea for 1983~2010 were calculated using regression models based on modified Institute of Agricultural Sciences (IAS) index in this study. The result showed that annual average rainfall erosivity in North Korea ranged from 2,249 to 7,526 and averaged value was $4,947MJmm\;ha^{-1}\;hr^{-1}\;yr^{-1}$, which corresponded to about 70% of annual average rainfall erosivity in South Korea. The finding was that the potential risk of soil erosion in North Korea has been accelerated by the increase of rainfall erosivity since the late 1990s.

A Study on Estimation of Rainfall Erosivity Using Frequency Analysis for Hapcheon Gauging Station (빈도해석에 의한 합천관측소의 강우침식인자 산정 연구)

  • Ahn, Jung Min;Lee, Geun Suk;Lyu, Si Wan
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.4
    • /
    • pp.19-27
    • /
    • 2012
  • RUSLE(Revised Universal Soil Loss Equation) has been widely used to estimate the soil loss amount of watersheds from rainfall erosivity, soil erodibility, topographic features and cropping management condition. Rainfall erosivity is the most dominant and sensitive factor among these so that the determination of reliable rainfall erosivity is essential to estimate the soil loss of watershed. Since there has been no criterion to determine the rainfall erosivity in Korea, the empirical values, determined from the relation between the annual average rainfall and erosivity or suggested by TBR(Transport Research Board), have been used for designing the erosion control structure and controlling the soil erosion for watersheds. In this study, the procedure for estimating the rainfall erosivity using frequency analysis is proposed. The most fitted distribution function, with calculated rainfall erosivities with various frequencies and durations, has been also selected. The suggested procedure can be used to estimate the optimal value of rainfall erosivity for RUSLE in order to design soil erosion structures and control the soil erosion in watersheds effectively.

A Study on Estimation of Rainfall Erosivity in RUSLE (RUSLE의 강우침식도 추정에 관한 연구)

  • Lee, Joon-Hak;Jung, Young-Hun;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1324-1328
    • /
    • 2008
  • RUSLE(Revised Universal Soil Loss Equation) is one of empirical models for estimating the soil loss effectively, when there is no measured data from the study areas. It has been researching into application and estimation of the RUSLE parameters in Korea. As one of the RUSLE parameters, the rainfall-runoff erosivity factor R, is closely connected hydrologic characteristics of the study areas. It requires a continuous record of rainfall measurement at a minute time step for each storm to calculate an accurate R factor by the RUSLE methodology and it takes a lot of time to analyze it. For the more simplified and reasonable estimation of the rainfall erosivity, this study researched for correlation between the rainfall erosivity and mean annual precipitation used 122 data from the existing studies in Korea. Considering hydrologic homogeneity, new regression equations are presented and compared with other annual erosive empirical index for the test of application. As the results, the study presents the isoerodent map at 59 sites in Korea, using annual rainfall data by the Korea Meteorological Administration from 1978 to 2007.

  • PDF

Derivation of regional annual mean rainfall erosivity for predicting topsoil erosion in Korea (표토침식량 산정을 위한 지역별 연평균 강우침식인자 유도)

  • Lee, Joon-Hak
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.9
    • /
    • pp.783-793
    • /
    • 2018
  • The purpose of this study to present updated regional annual mean rainfall erosivity data in the Republic of Korea. In 2012, Ministry of Environment in Korea published the notice about investigation and survey procedure for the amount of topsoil erosion and adopted USLE (Universal Soil Loss Equation) model to predict the amount of national-scale soil erosion in Korea. In the notice, regional rainfall erosivity values for 158 sites, which is essential to apply the USLE, were included, however, these values came from the data made before 1997 and need to be updated. This study collected, classified and combined annual mean rainfall erosivity data from the literature review to analyze the data. We presented that new iso-erodent map, interpolated by IDW (Inverse Distance Weighted) method and extracted updated regional annual mean rainfall erosivity data at 167 regions for 1961~2015. These values will be used as updated rainfall erosivity data to predict the amount of topsoil erosion in Korea.

Estimation of Rainfall-runoff Erosivity Using Modified Institute of Agricultural Sciences Index (수정 IAS 지수를 이용한 강우침식인자 추정)

  • Lee, Joon-Hak;Oh, Kyoung-Doo;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.8
    • /
    • pp.619-628
    • /
    • 2011
  • The purpose of this study is to evaluate the existing method of calculating rainfall-runoff erosivity using monthly precipitation, such as Fournier's index, modified Fournier's index, IAS (Institute of Agricultural Sciences) index, etc., and to present more reasonable regression model based on monthly rainfall data in Korea. This study introduced a new simplified method of calculating rainfall-runoff erosivity based on monthly precipitation, called by modified IAS index. It was expanded form IAS index which is the simple calculation method by summing up the rainfall amount of two months with maximum amount. Monthly precipitation and annual rainfall-runoff erosivity at 21 weather stations for over 25 years were used to analyze correlation relationship and regression model. The result shows that modified IAS index is the more reasonable parameter for estimating rainfall-runoff erosivity of the middle-western and south-western regions in Korea.

A Study of Distribution of Rainfall Erosivity in USLE/RUSLE for Estimation of Soil Loss (토양유식공식의 강우침식도 분포에 관한 연구)

  • Park, Jeong-Hwan;U, Hyo-Seop;Pyeon, Jong-Geun;Kim, Gwang-Il
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.5
    • /
    • pp.603-610
    • /
    • 2000
  • Climate factors such as rainfall, temperature, wind, humidity, and solar radiant heat affect soil erosion. Among those factors, rainfall influences soil erosion to the most extent. The kinetic energy of rainfall breaks away soil particles and the water flow caused by the rainfall entrains and transport them downstream. In order to estimate soil erosion, therefore, it is important to determine the rainfall erosivity. In this study, the annual average Rainfall Erosivity(R) in Korea, an important factor of the Universal Soil Loss Equation(USLE) and Revised Equation(RUSLE), has been estimated using the nationwide rainfall data from 1973 to 1996. For this estimation, hourly rainfall data at 53 meterological stations managed by the Meterological Agency was used. It has been found from this study that the newly computed values for R are slightly larger than the existing ones. It would be because this study is based on the range of rainfall data that is longer in period and denser in the number of gauging stations than what the existing result used. The final result of this study is shown in the form the isoerodent map of Korea.

  • PDF

Evaluation of Erosivity Index (EI) in Calculation of R Factor for the RUSLE

  • Kim, Hye-Jin;Song, Jin-A;Lim, You-Jin;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.1
    • /
    • pp.112-117
    • /
    • 2012
  • The Revised Universal Soil Loss Equation (RUSLE) is a revision of the Universal Soil Loss Equation (USLE). However, changes for each factor of the USLE have been made in RUSLE which can be used to compute soil loss on areas only where significant overland flow occurs. RUSLE which requires standardized methods to satisfy new data requirements estimates soil movement at a particular site by utilizing the same factorial approach employed by the USLE. The rainfall erosivity in the RUSLE expressed through the R-factor to quantify the effect of raindrop impact and to reflect the amount and rate of runoff likely is associated with the rain. Calculating the R-factor value in the RUSLE equation to predict the related soil loss may be possible to analyse the variability of rainfall erosivity with long time-series of concerned rainfall data. However, daily time step models cannot return proper estimates when run on other specific rainfall patters such as storm and daily cumulative precipitation. Therefore, it is desirable that cross-checking is carried out amongst different time-aggregations typical rainfall event may cause error in estimating the potential soil loss in definite conditions.

A Study to Determine the Rainfall Erosivity Factor of Universal Soil Loss Equation using Recent Rainfall Data (최근 강수 자료를 이용한 범용토양유실공식의 강우침식능인자 정의에 관한 연구)

  • Kim, Jonggun;Jang, Jin Uk;Seong, Gak Gyu;Cha, Sang Sun;Park, Youn Shik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.6
    • /
    • pp.13-20
    • /
    • 2018
  • Universal Soil Loss Equation (USLE) has been widely used to estimate potential soil loss because USLE is a simple and reliable method. The rainfall erosivity factor (R factor) explains rainfall characteristics. R factors, cited in the Bulletin on the Survey of the Erosion of Topsoil of the Ministry of Environment in the Republic of Korea, are too outdated to represent current rainfall patterns in the Republic of Korea. Rainfall datasets at one minute intervals from 2013 to 2017 were collected from fifty rainfall gauge stations to update R factors considering current rainfall condition. The updated R factors in this study were compared to the previous R factors which were calculated using the data from 1973 to 1996. The coefficient of determination between the updated and the previous R factors shows 0.374, which means the correlation is not significant. Therefore, it was concluded that the previous R factors might not explain current rainfall conditions. The other remarkable result was that regression equations using annual rainfall data might be inappropriate to estimate reasonable R factors because the correlation between annual rainfall and the R factors was generally unsatisfy.