DOI QR코드

DOI QR Code

True Random Number Generator based on Cellular Automata with Random Transition Rules

무작위 천이규칙을 갖는 셀룰러 오토마타 기반 참난수 발생기

  • Choi, Jun-Beak (School of Electronic Engineering, Kumoh National Institute of Technology) ;
  • Shin, Kyung-Wook (School of Electronic Engineering, Kumoh National Institute of Technology)
  • Received : 2020.02.14
  • Accepted : 2020.03.24
  • Published : 2020.03.31

Abstract

This paper describes a hardware implementation of a true random number generator (TRNG) for information security applications. A new approach for TRNG design was proposed by adopting random transition rules in cellular automata and applying different transition rules at every time step. The TRNG circuit was implemented on Spartan-6 FPGA device, and its hardware operation generating random data with 100 MHz clock frequency was verified. For the random data of 2×107 bits extracted from the TRNG circuit implemented in FPGA device, the randomness characteristics of the generated random data was evaluated by the NIST SP 800-22 test suite, and all of the fifteen test items were found to meet the criteria. The TRNG in this paper was implemented with 139 slices of Spartan-6 FPGA device, and it offers 600 Mbps of the true random number generation with 100 MHz clock frequency.

정보보안 응용을 위한 참난수 발생기(true random number generator; TRNG)의 하드웨어적 구현에 대하여 기술한다. 셀룰러 오토마타에 무작위 천이규칙을 도입하고, 매 시간단계마다 다른 천이규칙이 적용되는 새로운 방법을 제안하였다. 설계된 참난수 발생기를 Spartan-6 FPGA 소자에 구현하고, 100 MHz 동작 주파수에서 난수 생성동작을 검증하였다. FPGA 소자에 구현된 참난수 발생기로부터 2×107 비트의 난수 데이터를 추출하여 NIST SP 800-22 테스트를 통해 생성된 난수 데이터의 무작위 성능을 검증하였으며, 15개의 테스트 항목 모두 기준을 충족하는 것으로 확인되었다. 본 논문의 참난수 발생기는 Spartan-6 FPGA 소자의 139 슬라이스로 구현되었고, 100 MHz 동작 주파수에서 600 Mbps의 참난수 생성 성능을 갖는다.

Keywords

References

  1. M. Grujic, V. Rozic, B. Yang and I. Verbauwhede, "A Closer Look at the Delay-Chain based TRNG," 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, pp.1-5, 2018. DOI: 10.1109/ISCAS.2018.8351222
  2. F. James, "A review of pseudorandom number generators," Computer Physics Communications, Vol.60, No.3, pp.329-344, 1990. DOI: 10.1016/0010-4655(90)90032-V
  3. S. Callegari, R. Rovatti and G. Setti, "Embeddable ADC-based true random number generator for cryptographic applications exploiting nonlinear signal processing and chaos," IEEE Transactions on Signal Processing, vol.53, no.2, pp.793-805, 2005. DOI: 10.1109/TSP.2004.839924
  4. J. Von Neumann and A. W. Burks, "Theory of self-reproducing automata," IEEE Transactions on Neural Networks, Vol.5, No.1, pp.3-14, 1966.
  5. S. Wolfram, "Statistical mechanics of cellular automata," Reviews of Modern Physics, Vol.55, No.3, pp.601-644, 1983. https://doi.org/10.1103/RevModPhys.55.601
  6. T. Toffoli and N. H. Margolus, "Invertible cellular automata: a review," Physica D: Nonlinear Phenomena, vol.45, pp.229-253, 1990. https://doi.org/10.1016/0167-2789(90)90185-R
  7. E. Goncu and M.E. Yalcin, "A new Cellular Automata model with Memory and its FPGA implementation," 2014 14th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA), pp.1-2, 2014. DOI: 10.1109/CNNA.2014.6888627
  8. R. Alonso-Sanz and M. Martin, "One-dimensional cellular automata with memory in cells of the most frequent recent value," Complex Systems, Vol.15, No.3, pp.203-236, 2005.
  9. E. Goncu and M. Yalcin, "Cellular automata with random memory and its implementations," International Journal of Bifurcation and Chaos, Vol. 27, No.5, pp.1-15, 2017. DOI: 10.1142/S0218127417300178
  10. E. Goncu, A. Kocdogan and M. E. Yalcin, "A High Speed True Random Number Generator with Cellular Automata with Random Memory," 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, pp.1-5, 2018. DOI: 10.1142/S0218127417300178
  11. E. Goncu and M. E. Yalcin, "Realization of elementary cellular automata with random minimal memory," 2017 European Conference on Circuit Theory and Design (ECCTD), Catania, pp.1-4, 2017. DOI: 10.1142/S0218127417300178
  12. Special Publication (NIST SP)-800-22 Rev 1a, A Statistical Test Suite for Random and Pseudo-random Number Generators for Cryptographic Applications, 2010.
  13. V. Rozic, B. Yang, W. Dehaene and I. Verbauwhede, "Highly efficient entropy extraction for true random number generators on FPGAs," 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC), San Francisco, pp.1-6, 2015. DOI: 10.1145/2744769.2744852
  14. N. Deak, T. Gyorfi, K. Marton, L. Vacariu and O. Cret, "Highly Efficient True Random Number Generator in FPGA Devices Using Phase-Locked Loops," 2015 20th International Conference on Control Systems and Computer Science, Bucharest, pp.453-458, 2015. DOI: 10.1109/CSCS.2015.19
  15. B. Yang, V. Rozic, N. Mentens and I. Verbauwhede, "On-the-fly tests for non-ideal true random number generators," 2015 IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, pp.2017-2020, 2015. DOI: 10.1109/iscas.2015.7169072
  16. G. Ma, H. Liang, L. Yao, Z. Huang, M. Yi, X. Xu and K. Zhou, "A Low-Cost High-Efficiency True Random Number Generator on FPGAs," 2018 IEEE 27th Asian Test Symposium (ATS), Hefei, pp.54-58, 2018. DOI: 10.1109/ATS.2018.00021
  17. N. N. Anandakumar, S. K. Sanadhya and M. S. Hashmi, "FPGA-Based True Random Number Generation Using Programmable Delays in Oscillator-Rings," IEEE Transactions on Circuits and Systems II: Express Briefs, 2019. DOI: 10.1109/TCSII.2019.2919891
  18. X. Yang and R. C. C. Cheung, "A complementary architecture for high-speed true random number generator," 2014 International Conference on Field-Programmable Technology (FPT), Shanghai, pp.248-251, 2014. DOI: 10.1109/FPT.2014.7082786