DOI QR코드

DOI QR Code

Homogeneous Liquid Crystal Alignment on Anisotropic YSnO Surface by Imprinting Method

임프린팅법을 이용한 YSnO 박막의 표면 이방성 획득과 액정 배향 특성 연구

  • Received : 2019.08.05
  • Accepted : 2019.09.23
  • Published : 2020.01.01

Abstract

We investigated a solution-driven Yttrium Tin Oxide (YSnO) film that was imprinted using a parallel nanostructure as a liquid crystal (LC) alignment layer. The imprinting process was conducted at the annealing temperature of 100℃. To evaluate the effect of this process, we conducted surface analyses including atomic force microscopy (AFM). During imprinting, the surface roughness was reduced, and anisotropic characteristics were observed. Planar LC alignment was observed at a pretilt angle of 0.22° on YSnO film. Surface anisotropy induced by imprinting method forces LC to align along the direction of the parallel nanostructure, which is an alternative to conventional polyimide treated using a rubbing process.

Keywords

References

  1. J. S. Steckel, R. Colby, W. Liu, K. Hutchinson. C. Breen, J. Ritter, and S. Coe-Sullivan, J. Soc. Inf. Disp., 44, 943 (2013). [DOI: https://doi.org/10.1002/j.2168-0159.2013.tb06377.x]
  2. J. S. Steckel, J. Ho, C. Hamilton, J. Xi, C. Breen, W. Liu, P. Allen, and S. Coe-Sullivan, J. Soc. Inf. Disp., 23, 294 (2015). [DOI: https://doi.org/10.1002/jsid.313]
  3. N. Nishikawa, B. Taheri, and J. L. West, Appl. Phys. Lett., 72, 2403 (1998). [DOI: https://doi.org/10.1063/1.121390]
  4. Y. Liu, J. H. Lee, D. S. Seo, and X. D. Li, Appl. Phys. Lett., 109, 101901 (2016). [DOI: https://doi.org/10.1063/1.4962329]
  5. P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S.C.A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stohr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, Nature, 411, 56 (2001). [DOI: https://doi.org/10.1038/35075021]
  6. N. Fukuchi, B. Ye, Y. Igasaki, N. Yoshida, Y. Kobayashi, and T. Hara, Optical Review, 12, 372 (2005). [DOI: https://doi.org/10.1007/s10043-005-0372-8]
  7. J. H. Kim, B. R. Acharya, and S. Kumar, Appl. Phys. Lett., 73, 3372 (1998). [DOI: https://doi.org/10.1063/1.122754]
  8. R. Lin and J. A. Rogers, Nano Lett., 7, 1613 (2007). [DOI: https://doi.org/10.1021/nl070559y]
  9. L. L. Hench and J. K. West, Chem. Rev., 90, 33 (1990). [DOI: https://doi.org/10.1021/cr00099a003]
  10. S. C. Lee, J. H. Lee, T. S. Oh, and Y. H. Kim, Sol. Energy Mater. Sol. Cells, 75, 481 (2003). [DOI: https://doi.org/ 10.1016/S0927-0248(02)00201-5]
  11. V. Stengl, S. Bakardjieva, and J. Bludska, J. Mater. Sci., 46, 3523 (2011). [DOI: https://doi.org/10.1007/s10853-011-5262-9]
  12. M. F. Toney, T. P. Russell, J. A. Logan, H. Kikuchi, J. M. Sands, and S. K. Kumar, Nature, 374, 709 (1995). [DOI: https://doi.org/10.1038/374709a0]
  13. W. K. Lee, S. J. Hwang, M. J. Cho, H. G. Park, J. W. Han, S. Song, J. H. Jang, and D. S. Seo, Nanoscale, 5, 193 (2013). [DOI: https://doi.org/10.1039/c2nr32458j]
  14. S. J. Hwang and M. H. Hsu, J. Soc. Inf. Disp., 14, 1039 (2006). [DOI: https://doi.org/10.1889/1.2393028]